Keras: model.compile中自定义loss函数

本文介绍了三种在Keras中实现自定义损失函数的方式:方式1适用于简单的loss,如MSE、MAE等;方式2是通过创建自定义层处理复杂损失,支持多输入;方式3提供了一种便捷的方法,通过在网络结构中预先计算特定loss并级联。作者还给出了多个损失函数示例,包括交叉熵、KL散度等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

方式1   只含参数y_truey_pred

特点:适合只利用y_true和y_pred设计简单的loss,比如MSE、MAE、交叉熵loss等等

import keras.backend as K

"""
    这里定义model
"""


# 只含参数 y_true, y_pred
# MSE loss
def mean_squared_error(y_true, y_pred):
    
    # 这里自己写,或者直接return
    return K.mean(K.square(y_pred - y_true), axis=-1)


model.compile(optimizer='rmsprop',
              loss=mean_squared_error,                 # 这里对应上面loss函数名称即可
              metrics=['accuracy', mean_pred])




"""
   下面为其他loss函数,可替换上面的MSE loss
"""

def mean_absolute_error(y_true, y_pred):
    return K.mean(K.abs(y_pred - y_true), axis=-1)


def mean_absolute_percentage_error(y_true, y_pred):
    diff = K.abs((y_true - y_pred) / K.clip(K.abs(y_true), K.epsilon(), np.inf))
    r
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值