参考
Q-Table
这两种强化学习算法都使用Q表记录在每一个state下选择每一个action的值,并通过进入到下一个state’中所获得的反馈reward(可正可负)来更新Q表对应的(s,a)的值。
Q-Learning
原理分析:
实现步骤:
1.初始化Q-Table(Q表是一张二维的表格,每一行表示状态state,每一列表示行动action)
2.在每一轮训练中,首先初始化起始状态s,并在训练中的每一步进行如下操作:
(1)根据贪婪度epsilon概率选择下一步的动作action
(2)在当前状态state采用行动action后,得到下一状态state’和反馈reward
(3)更新Q(s,a)的值 = 老Q(s,a) + 学习率α · (Q真实值 - Q估计值),其中,Q的真实值 = 反馈r + 奖励递减γ · 在下一状态s’采取行动能获得的最大值
(4)更新状态,并当