搭建Coze扣子文档智能问答Bot工作流,保姆级教程来了!

在信息爆炸的今天,我们常常被淹没在各种文档之中——产品手册、技术白皮书、合同条款、内部报告……快速精准地从文档中提取所需信息,是提升日常工作效率的关键。这时,可靠的文档智能问答Bot就能成为我们的得力助手。

文档智能问答机器人能够将静态文档转化为动态知识库,比起原先埋头文档中靠自己阅读记忆,现在我们只需向Bot提问,它就能快速定位并输出文档中相关的精确答案或关键段落。例如:

  • 合同审核: 面对冗长的合同,直接询问“付款周期是多久?”或“违约责任条款有哪些?”,Bot能迅速给出答案,省去逐页查找的麻烦。

  • 技术支持: 新员工面对复杂设备手册,问“如何重置设备密码?”或“错误代码XX代表什么?”,Bot能立即提供操作步骤或故障解释。

  • 知识检索: 在海量的产品文档或研究报告中,提问“报告中关于市场趋势的主要结论是什么?”,Bot能快速定位核心信息并组织语言回答。

尽管直接使用大模型也能进行基础的文档问答,但是,LLM的强大之处在于其卓越的自然语言理解、推理和生成能力,能理解复杂问题、联系上下文甚至进行总结归纳,在文档问答任务的前端环节——特别是光学字符识别(OCR)准确提取扫描件/图片中的文字,以及精准解析复杂PDF结构(如表格、多级标题、页眉页脚)等方面——LLM的精度往往难以匹敌经过专门训练和优化的专有模型。

以下图为例,可以看到LLM和专有模型在扫描件少线表格这一难点上的解析能力差异:

样本原图

样本原图

LLM直接问答 VS. TextIn专有模型解析后问答

LLM直接问答 VS. TextIn专有模型解析后问答

因此,构建一个真正高效、可靠的文档问答Bot,关键在于发挥LLM与专有模型的各自优势,实现协作:利用专有模型高精度完成OCR和文档结构解析,确保原始文本信息被完整、准确地提取;然后将清洗后的文本输入LLM,利用其语义理解和推理能力,精准理解用户问题并从文档上下文中找出或生成最佳答案。

本文将提供详细教程,一步步演示如何在Coze平台上,搭建一个融合专业文档处理能力与LLM智能的文档问答Bot工作流。让我们开始,利用AI工具,让文档中的知识真正“活”起来,服务于你的日常工作。

Step 1:创建智能体

工作空间 -> 项目开发 -> 创建 -> 创建智能体 -> 创建 -> 输入项目名

图片

Step 2:创建工作流

工作流 -> 添加工作流

图片

创建工作流 -> 输入工作流名称和描述

图片

图片

Step 3:工作流配置

添加“插件”

图片

搜索“TextIn” -> 找到“pdf2markdown” -> 添加

图片

图片

Step 4:模块设置

1. 开始模块

类型设置 ->  input = File.Default

图片

2. 解析模块

类型设置

  • url = 开始.input

  • app_id = Textin.com账号信息,请登录后前往 “工作台-账号设置-开发者信息” 查看 x-ti-app-id

  • secret_code = Textin.com账号信息,请登录后前往 “工作台-账号设置-开发者信息” 查看 x-ti-secret-code

图片

Textin.com 获取 app_id和secret_code信息填入

图片

模块输出指向 -> 大模型

图片

3. 大模型模块

大模型 -> 选择 DeepSeek

图片

设置输入参数 -> pdf2markdown -> markdown

图片

输入系统提示词“请根据{{input}}进行内容总结”

图片

4. 结束模块

设置输出 -> 大模型 -> output

图片

Step 5:试运行发布

点击“试运行” -> 上传测试文件 -> 发布

图片

Step 6:添加工作流,开始问答

图片

图片

图片

图片

以上就是Coze平台文档智能问答Bot的搭建方法

在线体验文档解析https://www.textin.com/user/login?redirect=%252Fconsole%252Frecognition%252Frobot_markdown%253Fservice%253Dpdf_to_markdown%2526trigger%253Dbutton&show_gift=1&name=%E9%80%9A%E7%94%A8%E6%96%87%E6%A1%A3%E8%A7%A3%E6%9E%90&from=textincsdnwz0702_wdjx

<think>嗯,用户想了解Coze扣子工作流教程。首先,我需要确认用户所说的Coze是否是他们自己可能拼写错误,或者是否有其他名称的产品。不过根据常见的工具,可能是指字节跳动推出的Coze平台,它是一个AI Bot开发平台,工作流是其核心功能之一,用于自动化任务处理。 接下来,我需要回忆Coze工作流的主要功能和操作步骤。工作流通常包括触发器、节点配置、条件判断、API调用、数据处理等模块。可能需要分步骤介绍如何创建、配置和调试工作流。 用户可能需要基础的操作指南,比如如何进入工作流界面,添加节点,设置输入输出,使用变量,以及测试流程。此外,常见的使用场景示例可能对他们有帮助,比如自动化回复、数据处理或集成外部服务。 需要确保回答结构清晰,分步骤说明,并且语言简洁。同时,要检查是否遵循了系统指令,比如数学公式的格式,但在这个问题中可能用不到数学公式。不过还是要留意,如果有变量或代码块,可能需要用反引号包裹。 另外,用户可能遇到问题,比如节点配置错误或调试失败,可以提醒他们检查输入输出格式,或者查看官方文档。最后,附上官方资源链接会更好,但不确定是否允许,所以可能需要建议他们访问官网或社区。 现在组织回答结构:先介绍工作流是什么,然后分步骤讲解创建流程,再给出示例,最后注意事项和总结。确保每个步骤都有编号或小标题,方便用户跟随。</think>以下是为您整理的Coze扣子平台)工作流操作指南,分步骤解析核心功能与使用方法: --- ### 一、工作流基础概念 **作用**:通过可视化节点串联复杂任务,实现自动化处理(如多步计算、API调用、条件判断等)。 --- ### 二、操作步骤详解 #### 1. **创建工作流** - 进入Bot编辑页 → 点击「工作流」→「新建」 - 命名工作流并填写描述(建议明确功能) #### 2. **配置输入参数** - 点击「输入参数」→「添加参数」 - 定义变量名称、类型(文本/数字/布尔值等)及描述 *示例:添加`user_query`接收用户提问* #### 3. **添加节点与逻辑 **(1) 基础节点类型** - **代码节点**:执行Python脚本(支持数据处理) - **API调用**:接入外部服务(需配置URL/Headers) - **条件分支**:通过`if-else`控制流程走向 - **大语言模型**:调用AI生成文本 **(2) 节点连接技巧** - 拖动节点右侧「+」建立连接线 - 通过`{{变量名}}`引用上游输出值 *示例:`{{api_response.data}}`* #### 4. **调试与测试** - 点击右上角「调试」→ 输入测试参数 - 逐节点查看执行状态与数据流向 - 修改错误节点后需重新保存 --- ### 三、实用案例演示 **场景**:自动生成天气提醒 1. 输入参数:`location`(城市名) 2. 添加「API节点」调用天气接口 3. 添加「条件节点」判断是否下雨 - 是 → 调用LLM生成带伞提醒 - 否 → 返回基础天气信息 --- ### 四、注意事项 1. **变量作用域**:每个节点的输出需手动传递到下游 2. **错误处理**:建议为API节点设置重试机制 3. **性能优化**:避免在循环中频繁调用收费API --- ### 五、学习资源推荐 1. 官方文档:`coze.com/docs/workflows`(需替换为真实地址) 2. 社区案例库:平台内置的模板中心 3. 调试技巧:善用「控制台日志」输出中间值 如需特定场景的配置演示,可提供具体需求进一步详解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值