- 博客(1183)
- 收藏
- 关注
转载 论文浅尝 | LLM4VKG:利用大语言模型构建虚拟知识图谱(IJCAI2025)
我们在本体不完整场景下的进行了实验,图5显示,即使在本体中 25% 的词汇被移除后,LLM4VKG 依然取得了 0.46 的平均 F1 分数,与 BootOX 的性能非常接近。此外,表3中呈现的结果表明,在经过人工验证和修正后,o1 和 DeepSeek-V3 均达到了与SOTA级别的映射生成系统 BootOX 和 IncMap 接近的性能水平。大语言模型凭借其基于已学语言模式来处理和生成上下文相关文本的能力,能够辅助解释本体与数据库模式之间的复杂关系,从而有望改进虚拟知识图谱的构建过程。
2025-08-06 19:40:56
10
转载 IJCKG2025 | Archer: 基于推理的Text-to-SQL评测
假设推理要求模型具备反事实思维能力,即根据可见事实和反事实假设对未见情况进行想象和推理的能力。近期的一些研究在现有数据集上取得了不错的成果,但这些模型仍难以高效处理算术推理、常识推理和假设推理等复杂推理任务。OpenKG(中文开放知识图谱)旨在推动以中文为核心的知识图谱数据的开放、互联及众包,并促进知识图谱算法、工具及平台的开源开放。我们仅将您的代码用于评估目的,不会传播或披露您代码的任何细节。除主办方提供的数据集外,参赛者可使用公开的预训练数据(如词向量、字向量等),并允许使用公开数据集(如。
2025-08-05 10:35:09
7
转载 海报展示征集 | 全国知识图谱与语义计算大会CCKS 2025
第十九届全国知识图谱与语义计算大会(CCKS 2025)的主题是“大模型智能体与知识计算”,旨在探讨在知识图谱的支持下,如何提升大模型智能体在知识计算方面的准确性和可靠性。大会将具体探讨知识表示、知识存储、知识挖掘、知识融合、知识推理、可解释性、伦理、知识图谱增强的大模型、智能体架构等知识图谱和大模型智能体关键技术,以引导大模型时代知识计算技术的范式变革和知识增强的大模型智能体技术发展。本届大会的“Poster & Demo展示”不发表论文,采用线下方式进行展示,要求作。Poster & Demo 征集。
2025-08-04 19:41:01
27
原创 论文浅尝 | 利用大语言模型进行高效实体对齐(ACL2024)
这一创新框架旨在解决三个关键挑战:(1) 增强法学硕士解释和理解 KG 的能力,(2) 利用法学硕士中的固有知识实现更有效的 EA,以及 (3) 提高法学硕士在 EA 环境中的效率。LLM以对话形式进行多轮推理,综合考虑实体的名称相似性、结构相似性、实体描述及时间信息,动态调整搜索范围,逐步迭代优化实体对齐的准确性与效率。)的实体进行匹配,这是整合异构数据源的关键步骤,并在数据驱动的人工智能应用中扮演至关重要的角色。经过大规模语料库训练,掌握丰富的外部知识,能够为知识图谱中的实体提供丰富的上下文信息。
2025-08-01 19:40:37
660
转载 图谱实战 | 面向产业链投研的智能知识图谱研究探索
大模型幻觉问题,对金融领域决策的可靠性影响巨大,尤其在期货市场,这一问题的负面效应更为凸显。以公开市场信息为例,未优化的图谱仅能呈现标准化信息,而经过一轮针对二三十篇公众号文章的训练后,图谱能展现更丰富、准确的产业链信息,达到初级研究员水平。冲突解决和索引优化工作目前主要通过线下编写代码和可视化工具相结合的方式进行,虽然相对较为粗糙,但能够满足当前的技术预研需求,确保整体流程的顺利运行。比如,由于天气原因导致的运输延迟事件,可以通过图谱找到相应的历史案例,比较当时的市场反应与当前情况,为决策提供参考依据。
2025-07-30 19:40:34
63
转载 技术动态 | 利用大模型构建时序知识图谱与新一代“GraphRAG”智能体
2025年7月22日,OpenAI也在开发者社区重磅发布“KG+LLM”结合的企业智能知识管理红宝书Cookbook ,利用大模型构建时序知识图谱与新一代“GraphRAG”智能体,提升多跳路径检索的精准度。时间知识图谱允许您准确回答诸如“给定日期的真实情况”之类的问题,或分析事实和关系如何变化,确保决策始终基于最相关的背景。直接的单跳查询经常会遗漏分布在图拓扑中的显着事实。无论您是进行原型设计、大规模部署,还是探索使用结构化数据的新方法,您都会找到实用的工作流程、最佳实践和决策框架来加速您的工作。
2025-07-28 19:41:06
59
转载 直播预告 | OpenKG系列青年学术沙龙:“知识图谱+语言模型”赋能通用 AI
多路召回 + 精排”的组合范式虽然有效缓解了单一检索方式的语义覆盖不足问题,但在实际多模态大数据场景中仍面临诸多挑战:复杂语义融合能力不足、多模态语义对齐与相似性测度挑战、多模态数据孤岛问题严重等。本次报告将会介绍复杂知识检索的一些研究进展,主要包括面向知识图谱的结构化知识检索、标签约束下的稠密检索、区间约束下的向量检索等。OpenKG(中文开放知识图谱)旨在推动以中文为核心的知识图谱数据的开放、互联及众包,并促进知识图谱算法、工具及平台的开源开放。大模型与多智能体:协同智能探索。
2025-07-27 14:53:56
67
原创 论文浅尝 | 从RAG到记忆:大模型的非参数化持续学习(ICML2025)
OpenKG(中文开放知识图谱)旨在推动以中文为核心的知识图谱数据的开放、互联及众包,并促进知识图谱算法、工具及平台的开源开放。然而,它对向量提取的依赖阻碍了它模仿人类长期记忆的动态和相互关联性质的能力。的持续学习和长期记忆研究开辟了新的途径,通过在事实,意义构建和联想记忆任务中实现标准。方法的全面改进,显示出以前的方法在全面评估中忽视或无法实现的功能。未来的工作可以考虑利用基于图的检索方法,以进一步提高情景记忆能力的。系统在近似人类长期记忆的动态和相互关联的性质方面的局限性。)算法的两种类型的种子节点。
2025-07-25 19:40:37
1024
转载 技术动态 | 利用大模型构建骨架材料知识图谱及其应用 - 北京工大&华东理工等
通过利用大型语言模型(LLMs)的自然语言处理能力,成功构建了一个包含2.53百万节点和4.01百万关系的全面知识图谱(KG-FM),涵盖了金属有机骨架(MOFs)、共价有机骨架(COFs)和氢键有机骨架(HOFs)的合成、性质、应用等方面。该问题的研究相关工作包括对金属有机骨架(MOFs)、共价有机骨架(COFs)和氢键有机骨架(HOFs)的研究,但尚未有综合性的知识图谱被构建。问题3:在评估LLMs与知识图谱集成性能的实验中,设计了一个包含150个问题的测试集,这些问题的设计是如何进行的?
2025-07-23 19:41:00
34
转载 技术动态 | 法律大模型 X 知识图谱激活法律服务行业新范式
同时,大模型还能将为大客户服务积累的经验转化为适用于中小企业的法律服务,通过训练和优化,将复杂服务流程和专业知识简化,帮助中小企业获得高质量的法律支持。法律服务平台,促进法律服务的共享与协同。平台的开放有助于构建开放、共享的法律服务生态系统,吸引更多法律专业人士、机构和企业参与,优化各方资源配置,推动法律服务的创新发展,为行业进步注入新动力。根据不同业务场景和合同签订目的进行针对性审查,比对多份合同或文件的差异,审查合同主体合法性和资质,检测错别字和语法错误,评估诉讼风险,并有效管理合同版本。
2025-07-21 19:41:05
131
原创 论文浅尝 | TKDE 2025:高效知识超图3D循环卷积嵌入
本文提出一种端到端高效的知识超图嵌入模型HyCubE,该模型设计一种新颖的3D循环卷积神经网络和交替掩码堆栈策略,全面增强知识超图特征信息的交互和提取能力。最后,在所有数据集上的广泛实验结果表明,HyCubE模型始终优于最先进的基线,所有指标平均提升8.22%,最大提升33.82%。元知识元组的高效嵌入。此外,端到端架构可以实现关系和所有实体的嵌入,进一步增强结构特征的交互程度,有助于提高知识超图嵌入的性能。然而,知识超图由大量不同的知识元组组成,知识元组的元数通常是不同的(即不同元数知识元组的。
2025-07-18 19:40:15
572
原创 论文浅尝 | 细粒度的多模态知识图谱实体表示学习(AAAI2024)
但在实际场景中,由于不同领域数据间存在本质差异,如社交网络、分子结构、生物网络等,其图结构模式差异非常明显,导致传统的微调方法无法有效迁移,甚至会造成负迁移问题,出现微调后的模型性能不如直接训练的情况。图生成模式决定了图结构的统计特征和局部拓扑特性,因此预训练数据的图生成模式如果与下游任务数据明显不同,预训练模型学到的知识将难以有效应用于下游任务。的提出为图神经网络的迁移学习提供了新的思路,即明确建模下游任务的数据特性,这种方法对解决不同领域之间数据结构差异的问题有广泛的应用前景。
2025-07-16 19:41:03
722
转载 技术动态 | 知识图谱与大模型双轮驱动:金融行业智能化产品与架构的演进之路
在此,我们将基于实际案例,深入分享在实践过程中所积累的宝贵经验,同时对新范式是否会替代知识图谱,以及大模型如何助力解决知识图谱先前面临的问题展开探讨。另外,由于不同机构、不同行业、不同规模,乃至同一金融机构的不同业务,对金融知识的理解各不相同,规则存在极大局限性,所以不存在通用的完美解决方案。例如,同样是债券交易,但交易目的不同,如资产配置或短期套利,不同目的会有不同的预测和传导风险,而图谱三元组难以记录这些属性,会导致大量信息损失,进而致使图谱在推理过程中暴露出局限性。的方式更优,更新图谱性价比不高。
2025-07-14 19:40:57
151
转载 技术动态 | KAG-Thinker:「结构化」思考新范式,支持逻辑严谨的大模型复杂推理
整体实验效果如表 1 所示。KAG 框架 V0.8 版本为 Thinker 模型应用提供支持,融入 KAG 框架后的 Thinker 模型, Math、Deduce 都使用框架中的求解器进行求解,再用 Thinker 模型进行答案汇总,可以看到 KAG-Thinker 7B 的平均 EM 和 F1 性能相比于 Thinker 模型平均提升 3.0%,3.8%。这种问题 Thinker 模型拆分不稳定,主要的原因有两种,第一,LLM 对复杂的纯自然语言问题拆分存在不一致,第二,7B 模型的泛化能力有限。
2025-07-10 19:40:18
122
转载 征稿 | 2025知识图谱国际联合大会(IJCKG 2025)征稿截止日期延期至2025年7月24日
,旨在探索这两个前沿领域的交叉点及融合创新机遇,探究知识图谱在跨平台、跨领域等人工智能任务中的作用与应用,研究在通用人工智能背景下知识图谱发展的知识表示、知识组织与存储、知识挖掘、知识融合、自动推理等关键技术,引导知识图谱相关技术的转型,为最终实现通用人工智能奠定基础。OpenKG(中文开放知识图谱)旨在推动以中文为核心的知识图谱数据的开放、互联及众包,并促进知识图谱算法、工具及平台的开源开放。基于知识图谱的信息检索、基于图结构数据的信息检索、跨模态信息检索、信息检索中的知识图谱推理等。
2025-07-08 09:42:40
121
转载 技术动态 | RAKG:文档级检索增强知识图谱构建 - 上海人工智能实验室等
由此得出结论,成年蝴蝶有助于传粉。RAKG采用基于预实体的渐进式知识提取方法,有效减少了实体消歧的复杂性,规避了LLMs的长距离遗忘问题,并在拓扑结构覆盖和关系网络对齐方面实现了接近完美的性能。:RAKG引入了基于预实体的渐进式知识提取方法,这些预实体作为中间表示单元,基于它们进行信息集成,有效缓解了实体消歧的复杂性,并规避了LLMs的长距离遗忘问题。:在知识图谱质量评估中,RAKG首次将RAG评估框架引入知识图谱构建领域,并开发了标准知识图谱及其相应的评估方法,从而促进了构建的知识图谱质量的实践评估。
2025-07-07 19:40:37
107
转载 技术动态 | 通杀主流LLM!用知识图谱“撬开”大模型安全门,黑盒越狱新范式HBS-KGLLM发布
具体来说,首先让 LLMs 扮演 KG 专家的角色,然后将重写后的提示词作为 KG 三元组中的头节点,关系为包含关系,尾节点是空白的步骤节点,攻击尝试诱导 LLMs 来响应关于攻击提示词的详细步骤信息,这些信息可能包含越狱攻击期待模型生成的不当或者有害响应。该该论文提出的框架展示了 KG 在提示设计与攻击中的强大作用,为 LLMs 与结构化知识表示的结合提供了新思路,其主要特点是无需访问模型内部结构,更适用于广泛的封闭模型,降低了攻击研究的技术门槛。
2025-07-04 19:40:41
66
原创 论文浅尝 | KNOWFORMER: 重新审视基于Transformer的知识图谱推理模型(ICML2024)
该设计受知识图谱嵌入技术的启发,通过最大化事实三元组的连续真值生成关系消息,确保消息传递过程与知识图谱的语义一致性。其二,图谱的低秩结构特性要求模型具备对复杂拓扑关系的捕捉能力,而现有方法往往通过路径编码或大规模图谱预训练间接建模结构信息,导致效率与灵活性受限。数据集上的对比显示,所提近似核函数以线性计算复杂度实现了与全指数核相近的性能,平衡了效率与精度,而全指数核的二次复杂度在知识图谱场景中不可行,进一步验证了近似设计的实用性。数据集上的性能,验证了其对知识图谱推理的核心作用;具体而言,该工作提出了。
2025-07-02 19:41:01
754
转载 技术动态 | 智谱共融:大模型驱动的知识图谱范式重构与演进路径
本文将深入探讨知识图谱与大模型的深度融合路径,包括提示工程、模型微调、检索增强、推理协同等方面的应用,通过这些融合,将有助于构建下一代可信的智能系统,为实现通用人工智能奠定基础。上下⽂检索筛选⾼相关实体,反向优化推理路径。图结构存在一些天然的优势,例如具有更强的复杂推理能力,更好的可解释性、知识表达与关联性,以及更灵活的知识源集成能力,可以为大模型落地提供关键支撑。未来,将进一步拓展应用场景,加强技术研发,同时持续开展社区建设,构建大模型时代下全球领先的知识图谱开源生态,推动知识要素的高效流通与持续增值。
2025-06-30 19:40:43
167
转载 技术动态 | OpenSPG/KAG 0.8发布:可配置知识库索引 x 拥抱接入MCP x 系统接口完善,多跳问答效果持续领先
再次,KAG 完成了对KAG-Thinker 模型的适配。开发者可扩展IndexManager,实现/组合 对应的索引抽取器、检索器,完成KAG 打包并替换openspg-server 镜像中对应的安装包,在知识库构建的产品页面即可勾选自定义索引类型,实现自定义索引类型&产品的联动。近期版本迭代中,我们持续致力于持续提升大模型利用外部知识库的能力,实现大模型与符号知识的双向增强和有机融合,不断提升专业场景推理问答的事实性、严谨性和一致性等,我们也将持续发布,不断提升能力的上限,不断推进垂直领域的落地。
2025-06-28 19:40:38
240
转载 技术动态 | 图结构增强的GraphRAG方案:NodeRAG实现思路解读
在查询时,GraphRAG识别出问题中的相关实体,并通过参考这些相应的社区摘要来合成答案。使用大模型(LLM)将源语料库中的文本块分解为三个主要节点类型,语义单元(S)、实体(N)和关系(R),这些节点通过连接边(e)相互连接,形成初始的异构图。每个节点类型都有特定的功能和角色,例如实体和关系节点用于连接语义单元,属性节点用于表示实体的特征,高层元素节点用于总结社区的核心信息等。增强异构图(基于节点重要性的增强和基于社区检测的聚合),这两种方法分别捕捉了局部和全局的结构特征,增强图的语义信息和结构完整性。
2025-06-27 19:40:18
86
原创 论文浅尝 | LightPROF:一种用于基于知识图谱的大语言模型的轻量级推理框架(AAAI2025)
更严重的是,重新训练可能导致模型对现有知识的灾难性遗忘。关系检索:知识图谱中的关系描述了两个实体之间的特定连接,为它们的交互提供语义清晰度,并极大地丰富了知识图谱的信息内容。为了在参数较少的大语言模型上实现高效推理,作者开发了一种精细的知识适配器,它能够有效解析图结构并进行细粒度的信息整合,从而将推理图压缩为更少的标记,并通过投影器与大语言模型的输入空间实现全面对齐。,这一轻量级且高效的提示学习推理框架为小规模大语言模型提供了稳定的检索和高效的推理能力,与大语言模型本身相比,所需的训练参数要少得多。
2025-06-25 19:40:21
765
转载 技术动态 | 大模型时代的图机器学习
的发展虽短,但已衍生出多种研究方向,包括谱图学习、图结构学习、自监督学习、可信学习、异配图学习、自动统计学习、表达能力研究、图技术模型等。石川教授团队针对面向图数据的大模型关键问题,围绕图转换器、图对齐大语言模型、基于图工具的大语言模型预测器,进行了深入探索。大语言模型无法解决图的问题,从数据角度看,图数据结构与语言序列结构有本质不同,大模型难以建模图结构语义;另一方面,图模型不具备大模型的能力。第二个工作是图对齐大语言模型,旨在研究如何对齐图模型到大语言模型空间,同时处理图上传统预定义任务与开放式任务。
2025-06-23 19:40:16
61
转载 征稿 | 2025全国知识图谱与语义计算大会(CCKS 2025)征稿截止日期延期至2025年6月30日
大会将具体探讨知识表示、知识存储、知识挖掘、知识融合、知识推理、可解释性、伦理、知识图谱增强的大模型、智能体架构等知识图谱和大模型智能体关键技术,以引导大模型时代知识计算技术的范式变革和知识增强的大模型智能体技术发展。大会议程将包括讲习班、大会特邀报告、前沿趋势论坛、工业界论坛、青年学者论坛、评测与竞赛、论文报告、海报与系统展示等环节,邀请国内外知名学者介绍相关领域的最新进展和发展趋势,邀请产业界知名研发人员分享实战经验,促进产学研合作。,例如知识图谱增强的大模型训练、大模型推理、大模型可解释性等;
2025-06-20 19:40:25
214
原创 论文浅尝 | 基于知识引导的检索增强生成,实现大型语言模型的深度与忠实推理(ICLR2025)
的推理能力和忠实度。这种迭代流程模仿了人类解决问题时的探索方式,即基于现有线索逐步扩展和深化对问题的理解,每次迭代都通过知识图谱和文本的交互作用来缩小检索范围,最终找到能够回答问题的关键信息。在复杂知识推理任务中的性能。该框架利用知识图谱的结构化关系来指导文本检索,确保检索过程能够捕捉到实体间的深层次关联,同时通过文本上下文优化知识图谱的检索,从而实现更精准和全面的知识发现。)和文本检索,利用知识图谱的结构化关系指导文本检索过程,同时借助文本上下文优化知识图谱的检索,从而实现深度和全面的检索过程。
2025-06-18 19:41:01
1331
转载 技术动态 | 知识图谱:知识驱动的复杂推理
在大模型时代,这一技术方向正经历革命性变革,通过知识图谱与大模型的深度融合,还原数据内生的逻辑结构,为复杂场景决策提供更精准、可靠的智能支持,开创智能化知识应用的新范式。本期内容围绕知识图谱与大模型融合,探讨智能体构建、金融场景应用及符号知识引导推理等技术,展现知识驱动 AI 突破数据拟合、强化深层逻辑推演的趋势与价值。OpenKG(中文开放知识图谱)旨在推动以中文为核心的知识图谱数据的开放、互联及众包,并促进知识图谱算法、工具及平台的开源开放。,进入 OpenKG 网站。点击底部“阅读原文”,可。
2025-06-16 19:40:55
67
转载 技术动态 | 最大的开源GraphRag:知识图谱完全自主构建(港科大&华为)
测试AutoSchemaKG将原始段落转换为知识图谱数据后,多项选择题(MCQ)的性能保留情况,遵循现有工作的评估协议,为每个原始段落使用LLaMA-3-70B-Instruct生成五个多项选择题,为每个数据集采样了200个原始段落,共获得1,000个多项选择题。使用完整的维基百科与维基教科书来构建ATLAS-Wiki,使用Semantic Scholar的摘要部分来构建ATLAS-Pes2o,并使用cc-head、cc-middle和cc-tail各3%的数据来构建ATLAS-CC。
2025-06-13 16:00:57
122
转载 论文浅尝 | 结合强化学习与大型语言模型的复杂问答协作推理框架(COLING2025)
该框架利用大型语言模型的先验知识和推理能力,为强化学习提供更有效的探索和奖励信号,并通过强化学习避免大型语言模型的幻觉问题,提供可解释的推理链。为了有效处理复杂问题,该模型引入了高层级约束检测策略,其核心功能是检测推理过程中遇到的约束类型,从而指导路径推理过程,确保推理方向正确。然后,策略代理根据选择的动作,逐步构建推理路径,直到找到答案实体或达到最大推理步数。根据当前状态和上下文演示输出每个选项的概率,作为中间奖励,解决延迟和稀疏奖励的问题,加速模型收敛,使模型能够更快地学习到有效的推理策略。
2025-06-11 19:40:47
182
转载 技术动态 | 多模态 GraphRAG 初探:文档智能+知识图谱+大模型结合范式
这一工作非常依赖于版式分析中对标题的定义,标题的粒度需要定义成多级的标题,标注方式非常不统一,我们发现每个版式里面可能标题和段落标题的字号或字体都相近,这可能对后续的版式识别模型影响较大。去年四月份,我们也开源了一些版式分析的模型,主要针对中文论文、英文论文、中文研报和教材这四个领域,在这四个场景下进行了细粒度的标注,训练出了一个轻量化的模型。版式分析的大部分工作集中在标注环节,而标注高度依赖于对业务的理解,业务需要控制标签的力度,然后我们进行相应的数据标注,以满足垂直领域场景的要求。
2025-06-09 19:40:33
89
原创 论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)
它使用LoRA对带有判别指令的生成式LLM进行微调,不涉及将LLM的输出接地到KG中的实体。基于DIFT和CoLE的正确预测之间的差异,我们可以得出结论,LLM并不是盲目地重复CoLE预测的实体,而是基于其在预训练阶段获得的知识来推理缺失的事实。DIFT使用一个轻量级模型来获得候选实体,并使用判别指令微调LLM,从给定的候选实体中选择正确的实体。为了在减少指令数据的同时提高性能,DIFT使用截断采样方法选择有用的事实进行微调,并将KG嵌入注入到LLM中。h的描述性文本,包含了丰富的实体信息。
2025-06-04 19:40:46
725
转载 技术动态 | 融合知识图谱与大模型的中医临床辅助决策体系
本文深入探讨了中医学与信息学之间的关系,提出了中医学本质上是一门信息科学的观点:医者在中医理论指导下和临床经验的约束下,围绕着帮助患者解除病痛这一目标,利用自己的感官望闻问切,有目的的收集患者的临床表现及其相关信息,将其记录下来,就形成了数据;再利用自己所掌握的疾病、证候等知识等做出判断,形成诊断结果,就将信息转换为知识,进一步依据诊断结果、结合自己临床经验和所掌握的干预手段提出诊疗方案和处方用药,这就将知识进一步转变为智慧。最终,大模型可以结合知识图谱实现患者的证候诊断,并据此提出更为准确的治疗建议。
2025-06-03 09:30:32
168
原创 论文浅尝 | 将复杂知识图谱问答对齐为约束代码生成(COLING2025)
生成任务和代码生成任务的结构相似性,旨在利用代码大语言模型强大的编程能力提升生成质量,增强模型生成逻辑形式的稳定性和鲁棒性,减少句法错误率,从而更好的实现复杂知识问答任务的性能。具有更强的推理能力和丰富的通用知识,但在简单场景下,面对特定领域相关的知识问答场景无法充分发挥自身通用推理的能力,这也进一步表明更强的模型并不一定在所有场景下的表现都是最优的。逻辑形式是连接自然语言问题与知识图谱的桥梁,由于预训练阶段接触到的逻辑形式较少,面对复杂查询如非单调推理,逻辑组合,数值计算等情况,直接生成。
2025-05-30 19:41:09
550
转载 技术动态 | 知识图谱+知识库RAG项目Yuxi-Know及大模型推理内部可视化工具OpenMAV实现拆解
比较有趣的是,其实现思路,可以在https://github.com/attentionmech/mav/blob/main/documentation.md中找到,核心思路是在生成token时拦截和处理LLM的内部状态来运行。可以直接使用构建好的知识图谱数据,如:https://github.com/xerrors/Yuxi-Know/blob/main/test/data/A_Dream_of_Red_Mansions.jsonl。该工具通过交互式的基于终端的界面,为用户提供对模型内部结构的洞察。
2025-05-28 19:40:40
162
原创 论文浅尝 | 基于历史链推理的时间知识图谱预测(ACL2024)
从步骤2到步骤k-1,LLM在步骤i中提供i阶历史链(i={2,3,··,k-1}),并被指令推断n个最重要的历史链。在这个步骤序列中,步骤i-1中LLM的输出是推断的(i-1)阶历史链,然后每个链都被提供相应的阶历史,以组成i阶历史链。CoH方法的推理结果能够最大化地提高时间知识图谱预测的精度,作者设计了一种结果融合机制,将LLMs的预测结果与基于图的模型(如图神经网络,GNNs)的预测结果相结合。然后,它被提供相应的二阶历史“俄罗斯在t1与乌克兰发生战争”,组成二阶历史链,作为步骤2的输入。
2025-05-26 19:41:04
900
转载 技术动态 | Stardog-基于知识图谱的企业级人机协同Agent智能体
因此,随着我们对域和用例的理解不断发展,包括未来的专业化,例如,“疑似间谍拖网渔船”,初始查询(“当前纬度 1 海里范围内的车辆”)是动态的,并且始终是新鲜的。这种方法不仅缩短了实现价值的时间和成本,而且还体现了 AI 的引导效应,其中 LLM 飞轮迭代地提高了数据质量,从而增强了代理和 AI 的价值。最重要的是,这创造了一个强大的反馈循环:随着代理创建更好的本体,其他代理在他们的任务中变得更加有效,这反过来又产生了更好的数据,用于进一步的本体优化。数据是补救措施,而本体是刚才讨论的各种数据的最佳容器。
2025-05-23 19:40:19
66
原创 论文浅尝 | 自提示方法实现大语言模型的零样本关系抽取(EMNLP2024)
接着根据关系描述生成一组同义词,这些同义词可以是单个词汇或者是短语,但是都必须与原始的关系语义保持一致,最后整合同义词,生成的同义词与原始关系一起构成一个语义群组((3)展示了合成样本生成策略的重要性:通过消融实验,证明了关系同义词生成、实体过滤和句子重述等策略对提升模型性能的重要作用。)提出了一种新的方法,通过关系同义词生成、实体过滤和句子重述等策略,生成高质量、多样化的合成样本。:该框架通过一个三阶段的多样化方法生成合成样本,这些样本包含特定的关系类型,并作为上下文示例(首先,缺乏详细的上下文提示(
2025-05-21 19:40:49
914
转载 图谱实战 | 大模型和知识图谱双轮驱动的汽车制造业知识服务
其中非结构化数据往往分散于员工设备中,难以整体管控,文档之间的关联度较低,要将其中的知识进行关联会非常困难,也会带来巨大的运维成本,因此知识大多是离散的,这对企业的知识积累非常不利。我们打造的汽车制造业知识服务中台,汇聚了各个部门、各种流程中的知识,通过知识图谱将知识有机整合,从研发设计到售后服务的整个过程中,知识点始终保持对齐,使各环节的智能化都有所提升。另外,也实现了动态的知识维护。若遇到复杂细节询问,则构建知识图谱,梳理概念框架,定义关系,利用大模型自动拆解规则,进行图谱构建,以回答复杂问题。
2025-05-19 19:41:00
263
原创 论文浅尝 | HOLMES:面向大语言模型多跳问答的超关系知识图谱方法(ACL2024)
根据问题和领域内的知识构建查询对齐的知识架构,用其对超关系知识图进行裁剪,保留与查询相关的信息。然后,在文档和实体节点之间建立边缘,形成了一个两分图,该图捕获了实体与它们出现的文档之间的连接,通过层次遍历来探索相关的潜在语义图,并利用。为了消除超关系图中与检索无关的信息,作者构建了一个与查询对准的知识模式,图模式使用两个来源填充:通过识别推理查询中的关系得出模式元素,然后使用。该方法的关键思想是识别包含多跳问题答案的文档子集,随后从它们中提取上下文感知的结构化信息,进一步使用基于查询的。
2025-05-16 19:41:03
852
转载 会议交流 | AI Agent 知识工程及在真实场景落地探索
如何优化 Function Call?RAG、ChatBI、Agent 知识工程怎么搞?Data Agent、具身 Agent 是未来趋势吗?AI Agent 在真实场景的最佳实践?AI Agent 有哪些协同新范式?5月17日,09:20-21:00,在 DataFun 举办的「AI Agent 技术峰会」将邀请20余位AI Agent一线专家学者,就AI Agent的知识工程、端侧应用、Data Agent、具身 Agent、人机协同、最佳实践等话题进行深度分享,感兴趣的小伙伴,欢迎识别二维码,免费报名
2025-05-15 19:00:59
346
转载 技术动态 | SymAgent:一种神经符号自学习代理框架,用于知识图谱上的复杂推理
具体来说,需要将KG的符号结构与LLMs的神经表示对齐,处理KG信息不足的情况,并在仅有自然语言输入输出对的情况下解锁LLMs的全部推理潜力。:错误分析表明,WebQSP的错误主要是推理错误(94.34%),而CWQ和MetaQA-3hop的错误分布更为多样化,显著存在超出最大步数(EMS)的错误,表明未来在这些领域有改进的空间。通过这些动作工具的组合使用,Agent-Executor模块能够有效地整合KG和外部文档的信息,解决KG不完整性的问题,从而提高推理的准确性和完整性。
2025-05-14 16:31:00
117
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人