论文学习:Microsoft COCO Common Objects in Context

Microsoft COCO数据集旨在促进物体识别,特别关注非图标视图中的物体检测和上下文推理。论文指出,COCO包含91种物体类别,250万标注物体,32.8万张图片,平均每张图片有3.5个类别和7.7个实例,强调了上下文在复杂场景理解中的关键作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文学习:Microsoft COCO: Common Objects in Context

Abstract

  • 为了促进物体识别的发展,COCO数据集是在把物体识别放到更广泛的场景理解问题下的情况下被制作而成的。
  • 每个物体都被单独分割标注,这样做的目的是进行精确的物体定位。
  • 数据集包含91种物体类别,2500000个被标注的物体,328000张图片

INTRODUCTION

论文要点

  • 对可见场景的理解包括以下几种任务:

    • 识别出所呈现出的物体是什么
    • 在2维或3维空间中对物体定位
    • 决定物体和场景的属性
    • 找出物体之间的关系并对场景进行描述

    现有的数据集都适用于场景理解的第一个任务。

  • COCO数据集专注于解决3大核心问题:

    • 检测非图标视图(non-iconic views)中的物体:

      图标视图指的是物体大致位于图片中间,没有遮挡,轮廓清晰的这种。

      非图标视图指的是存在于背景中,有遮挡的,杂乱的这种。

    • 物体之间的上下文推理:

      在一张自然图片中识别出多个物体是一个挑战,因为图片中的物体存在小尺寸和容易混淆的问题,想要实现识别出多个物体,需要使用上下文(context)。为了推进上下文推理(contextual reasoning)的发展,用图像去描述场景而不是孤立的物体是必要的。

    • 物体精确的二维空间定位<

### 如何下载 COCO 数据集 COCO (Common Objects in Context) 是一个广泛应用于计算机视觉领域的大规模数据集,包含丰富的图像及其标注信息。为了获取此数据集并将其用于项目开发,可以按照以下方法操作。 #### 下载地址 官方提供了完整的数据集下载链接页面[^1]。访问 [COCO 官方网站](http://cocodataset.org/#download),可以在 **Download** 部分找到不同版本的数据集文件以及对应的标注文件。 #### 文件分类 COCO 数据集通常分为训练集、验证集和测试集三部分。每种集合都有相应的图片资源和 JSON 格式的标注文件。具体如下: - 训练集 (`train2017`) 和验证集 (`val2017`): 这些是主要的训练和评估数据。 - 测试集 (`test2017`): 不提供标注文件,仅适用于提交模型预测结果到竞赛平台。 - 标注文件: 包括目标检测框、实例分割掩码、关键点位置等信息,存储为 JSON 文件形式[^3]。 #### 自动化脚本 对于希望简化流程的研究者来说,也可以利用 Python 脚本来完成自动化下载过程。下面给出一段基于 `wget` 的简单实现方式来批量抓取所需资料: ```python import os def download_coco(year='2017', data_type=['train','val'], root_dir='./coco'): base_url = 'http://images.cocodataset.org/zips/' if not os.path.exists(root_dir): os.makedirs(root_dir) for dt in data_type: file_name = f'{dt}{year}.zip' url = f"{base_url}/{file_name}" command = f'wget {url} -P {root_dir}' print(f'Downloading {file_name}') os.system(command) if __name__ == '__main__': download_coco() ``` 上述代码定义了一个函数 `download_coco()` ,通过指定年份参数(默认为 2017 年版)、数据类型列表(可选填入 `'train'`, `'val'`, 或 `'test'`),以及根目录路径来进行定制化的下载任务。运行这段程序将会依次调用系统命令行工具 wget 来取得压缩包形式的原始素材,并保存至本地硬盘上的指定文件夹内[^4]。 注意,在实际执行前需确认已安装必要的外部依赖库如 wget 。如果是在 Windows 环境下工作,则可能需要额外配置 MinGW-w64 工具链或者改用其他支持跨平台特性的替代方案比如 urllib.request 库。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值