@@@@@TopNet Structural Point Cloud Decoder(补全,项目网站404)(8.23)

本文介绍了拓扑在3D形状补全中的重要性,传统解码器存在忽视结构的问题。提出了一种根树结构的解码器,能建模点云的任意拓扑,提高了点云生成性能。在Shapenet数据集上,相对于现有方法提升了34%。文章还对比了体积生成、多分辨率、非结构化和流形基点云生成方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

拓扑(Topology)


今天开始学习这篇论文了,刚上来就被一个叫作拓扑的东西吸引到了,虽然接触了点云、体素这些用来表示三维物体的方式,但是拓扑还是第一次听说,因此特地上网查了一下“拓扑”。其中中科院在知乎上面这篇科普文章还是给了我一个大概的知识框架。

硬核科普:什么是拓扑?
不求甚解的看了一下这篇文章,大概总结了两点

拓扑是什么?

拓扑是一种除直接观察物体表面几何特征的另一种归和表达物体特征的方式。
规定了两点:
1、不能再物体表面打洞。
2、不可以使物体上的两点结合在一起。
在遵守上面两条限制的情况下能够将一种物体拉伸为另一种物体的可以称之为有相同的拓扑性质。(比如文中举例的咖啡杯变甜甜圈,球变椭球)

拓扑如何表示更高维度的物体?

文章里用一张纸来分别粘合甜甜圈和克莱因瓶的方式表示两个结构不同的拓扑性质。克莱因瓶虽然不是三维结构的物体,不能直接用几何来对甜甜圈进行区分,但是可以用拓扑性质区分不同维度的物体。

开头目前生成点云得到大多数方法是设计一个解码器,利用MLP和反卷积网络对2D编码器生成的潜在特征进行解码。使用CD和EMD来计算损失……(这在读PCN和GRNet两篇论文的时候就已经非常耳熟能详了。)

缺点是没有考虑真实世界3D对象中自然存在的拓扑或结构。

例子(不太懂):假设三维物体的点云位于2-manifold上,因为通常定义为局部相似的拓扑空间欧几里德平面。因此,所提出的解码器被迫学习从欧氏平面到目标点云的一组映射或变形。**强加这些学习过程中的结构可能导致三维物体点云生成的性能比较到忽略结构的方法。然而,通常被忽略的是,用于分组点云的特定表示可能对使用非结构化(即置换不变)损失的学习过程产生的潜在影响。**由于可能的解决方案的空间受到限制,在学习过程中实施单一的特定结构可能不是训练的最佳选择。

提出了一种更通用的解码器。它可以通过在根树结构中隐式修改点云结构来生成结构化点云。我们证明,在

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值