文本语言模型的参数估计-最大似然估计、MAP及贝叶斯估计及跟NLP推荐的好博客

博客介绍了文本分析的三种主要参数估计方法:最大似然估计、最大后验概率估计和贝叶斯估计。详细讲解了MLE如何寻找似然函数最大值,MAP在MLE基础上引入先验概率,并讨论了贝叶斯估计中的共轭分布概念。适合NLP初学者理解这些基本概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

http://blog.csdn.net/yangliuy/article/details/8296481

博客2:http://licstar.net/archives/687

非常好的一篇文章。普及NLP常见的数学常识。如:

1、文本分析的三种参数分析方法:最大似然估计MLE,最大后验概率估计MAP,贝叶斯估计。

1.1 最大似然估计MLE

最大似然估计就是要用似然函数取到最大值时的参数值作为估计值,似然函数可以写做


由于连乘


该函数取得最大值是对应的的取值就是我们估计的模型参数。

1.2 最大后验概率MAP

与最大似然概率不同的是:引入先验概率

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值