线性回归3:正则化-岭回归

本文探讨了过拟合这一常见机器学习问题的解决方案,包括增加数据量、特征选择与提取(如PCA)、以及正则化等方法。正则化通过引入L1或L2范数约束,有效防止模型复杂度过高,避免过拟合现象。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

过拟合解决办法:

  • 加数据

  • 特征选择/特征提取(比如PCA)

  • 正则化

正则化框架:

常用的有两种范数:

L1正则是不存在解析解的,我们能求L2范数的目标函数:

所以w为:

对目标函数求导,令其导数为0:

得w估计:

与最小二乘估计对比:

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值