最优化理论-线搜法(Line Search Methods)

本文探讨了线搜索法在优化算法中的应用,详细介绍了精确线搜索法,包括二分法、插值法和黄金分割法等,以及非精确线搜索法在确定一阶优化的学习率中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

分类

  • 准确的线搜法:迭代次数确定。如二分法,插值法,黄金分割法,etc.
  • 非准确的线搜法:在一阶优化中用得较多,用于确定学习率(步长)。
    前面四种属于准确的线搜法,后面两种属于非准确的线搜法

二分法

如下图,反复交替确定上下界,终止条件是最终经过kkk次迭代后的上下界之间的距离小于预设的比较小的值:(12)k(˙xU−xL)⩽ϵ(\frac{1}{2})^k \dot (x_U-x_L) \leqslant \epsilon(21)k(˙xUxL)ϵ。黄金分割法与二分法差不多,不再是折中取点,而是以0.618取点。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值