Windows + pycharm + jupyter + pytorch安装配置

本文详细记录了在Windows系统中使用Anaconda创建虚拟环境,安装CUDA、cuDNN,配置PyTorch以及将其加入Jupyter Notebook的过程。涉及的步骤包括Anaconda安装、环境创建、CUDA和cuDNN版本匹配、环境变量设置、PyTorch版本选择及安装,以及如何在Jupyter中使用新环境。文章还提供了一些在安装过程中可能遇到的问题及解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

    记录一下在pytorch学习中的一些问题,先从安装配置开始,以防自己之后需要配置新环境时忘了。

目录

1.Anaconda安装

 2.创建虚拟环境

3.寻找本机显卡适配CUDA

4.在NVIDIA官网下载对应版本的CUDA

 5.安装适配cuDNN

 6.安装pytorch

7.使用pytorch加入jupyter核

(1)设置jupyter指定端口:

(2)查看配置文件目录:

 (3). 已安装的环境配置到jupyter中

8、一些其他常用命令(更新中)

(1)根据已有环境克隆一个新环境


1.Anaconda安装

Anaconda安装就不多说了,官网上直接下载或者清华镜像下个最新版就行。

下载过程中需要注意是否有勾选自动修改环境变量,否则需要自己去添加一下环境变量。

 2.创建虚拟环境

可以在anaconda navigator上直接创建,也可以在prompt上命令行创建。

命令行创建:

conda create --name yuyin python=3.7 ipykernel

最后的

ipykernel

 可以在创建环境是就安装好,也可以不加直接创建环境。

 安装好后,查看已装环境:

conda env list

说明安装成功了。

这里我安装了好几次都失败一直无法创建环境:

查了很多原因,最后应该是镜像下载问题。我的解决路径:

1.先是安装了 清华镜像

在镜像下安装一直不成功。报错应该是http访问问题。

2.按着百度的方法试了把https改成http,在镜像末尾加上/win64/都不成功。

可以在C:C:\Users\Tony下找到.condarc文件,可以直接修改镜像路径,但是还是不成功,不过报错变了。

3.最后我把镜像全删了下载成功。

3.寻找本机显卡适配CUDA

此处我参考:pytorch、显卡、显卡驱动、cuda版本是如何对应的 - 简书

 先在NVIDIA官网找显卡对应算力,再在

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值