计算机视觉——图像理解简介

本文介绍了计算机视觉中的图像理解,涵盖分类、检测和分割三个层次。重点讨论了Faster RCNN、Mask RCNN及改进的Mask Scoring RCNN,详细阐述了它们的网络结构和工作原理,特别是RPN、ROI Pooling和Mask预测。此外,提到了Tensorflow Object Detection API和DeepLab在语义图像分割中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

计算机视觉——图像理解简介


图像理解的三个层次

在这里插入图片描述

  • 一是分类(Classification)

    ​ 将图像结构化为某一类别的信息,用事先确定好的类别(string)或实例ID来描述图片。

  • 二是检测(Detection)

    ​ 检测关注特定的物体目标,要求同时获得这一目标的类别信息和位置信息。

  • 三是分割(Segmentation)

    ​ 分割包括语义分割(semantic segmentation)和实例分割(instance segmentation)

    ​ 简单来说,前者不区分属于相同类别的不同实例,而后者区分

相关网络

Faster RCNN [2016]
  • 经过R-CNN和Fast RCNN的积淀,Ross B. Girshick在2016年提出了Faster RCNN
  • 将CNN引入目标检测的开山之作
  • 网络结构如下:

在这里插入图片描述

  • Conv layers

    • 作为一种CNN网络目标检测方法,Faster RCNN首先使用一组基础的conv+relu+pooling层提取image的feature maps。该feature maps被共享用于后续RPN层和全连接层。</
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值