统计学习方法——支持向量机(SVM)

支持向量机(SVM)是一种二类分类模型,利用最大间隔和核技巧解决线性及非线性问题。内容涵盖了线性可分支持向量机的硬间隔最大化,线性支持向量机的软间隔最大化,以及非线性支持向量机如何通过核函数处理非线性分类。SVM通过在特征空间中寻找最优超平面实现高效分类。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

SVM


支持向量机 (support vector machines, SVM) 是一种二类分类模型,它的基本模型是定义在特征空间上的间隔最大的线性分类器;支持向量机还包含核技巧,这使它成为实质上的非线性分类器

支持向量机的学习算法是求解凸二次规划的最优化算法

欧几里得空间和希尔伯特空间 【源自维基百科】

  • 欧几里得空间

    可以被扩展来应用于任何有限维度,而这种空间叫做n维欧几里得空间(甚至简称 n 维空间)或有限维实内积空间

  • 希尔伯特空间

    完备的内积空间,也就是说一个带有内积的完备向量空间。希尔伯特空间是有限维欧几里得空间的一个推广,使之不局限于实数的情形和有限的维数,但又不失完备性(而不像一般的非欧几里得空间那样破坏了完备性)

线性可分支持向量机与硬间隔最大化

  • 线性可分支持向量机的定义在这里插入图片描述
  • 最优化问题的推导
    在这里插入图片描述
  • 最大间隔法
    在这里插入图片描述

线性支持向量机与软间隔最大化

假设训练集不是线性可分的【意味着某些样本点不能满足函数间隔大于等于1的约束条件】,通常情况是

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值