洛谷主页装饰(全网最详)

目录

主页

一、动图

二、个人介绍图

三、访问量

四、随机图

五、个人信息卡

六、LATEX技术贫富差距

七、 彩色字

八、  链接添加

九、视频添加


主页

先给你们看看我的洛谷主页:

主页链接

其实里面还有好几张动图……

好,接下来我就来为大家一一讲解这些怎么弄

一、动图

这很简单,和图片同理,只要填上链接就行了

格式:![](X)

X为图片链接

找不到动图的我为大家整理了一些:

链接

二、个人介绍图

就是这张图:

去这个网页:API|Xecades

三、访问量

就是这个东东:

去另一个网页:Badger

点击Create your badger,再选择颜色,最后复制下方的代码到主页就行了

四、随机图

直接把这个东东放到主页就行啦!

https://t.mwm.moe/fj/

五、个人信息卡

就是这个:

这个网站:

Luogu-User-Card

六、LATEX

这个复制到主页里:

$\colorbox{X}{\color{Y}{\Huge{\ L \hspace{-.4cm}{\raisebox{+.3cm}{A}} \hspace{-.3cm}{T} \normalsize\hspace{-.3cm}{E} \Huge{\hspace{-.2cm}{X}} 技术贫富差距}}}$

X为背景色,Y为字体色

Huge为字体大小,也可以替换

从大到小为:Huge huge LARGE Large large normalsize small footnotesize scriptsize tiny

为你们整理的颜色

红色red
橙色orange
黄色yellow
绿色green
青色cyan
蓝色blue
紫色purple
粉色pink
灰色grey
棕色brown
黑色black(还用说吗)
白色white(是的,可以打白色)

七、 彩色字

先看效果:

首先我们先要打出‘$’号

然后是格式,应该这样打:$color{A}{B}$在这里,A是颜色的英文,如红色是red,蓝色是blue,B是文本,如果要打中文就加上/text{}

就变成了:$color{A}{/text{B}}$

颜色参照上面那张表︿( ̄︶ ̄)︿

八、  链接添加

格式:[X](Y)

X为替换文本,Y为链接

如,我要添加一个叫个人主页的网址,传送到的网页是我的个人主页

效果:个人主页

写法:[个人主页](https://blog.csdn.net/Touxin_jingluo)

九、视频添加

首先,在主页里插入视频的格式是:

![](bilibili:BV号)

那现在我们要了解,BV号是什么东西

来看一张图片:

在这里网址是 https://www.bilibili.com/video/BV1u64y1w7rL/?spm_id_from=333.337.search-card.all.click 那BV号就是BV1u64y1w7rL

照着这个方式写一遍:

bilibili:BV1u64y1w7rL

最后把它放到![]()的小括号里就行了

这样就可以插入了

OK,教学完成,学会了就快去试试吧

点个赞和收藏吧,关注也行,看了这么久,也评论一下吧,求求(づ ̄3 ̄)づ╭❤~

### 关于 P1948 的分层短路径问题 #### 问题背景 P1948 是一道典型的 **分层图短路径问题**。这类问题通常通过构建多个层次的图来模拟某些特殊条件下的状态转移,例如时间、费用或其他约束条件的变化。 --- #### 分层图的概念 分层图是一种扩展原图的方式,在原有基础上增加额外的状态维度(如层数)。每一层对应一种特定的状态或阶段,不同层之间可以通过某种规则相互连接[^3]。这种建模方式非常适合处理带有多重限制的短路径问题。 --- #### 解题思路分析 对于该问题的核心在于如何利用已知算法求解分层图中的短路径: 1. **模型转换** 将原始单层图转化为多层图,每层表示不同的状态变化。假设总共有 \( k \) 层,则每个节点会复制成 \( k \) 份,形成新的节点集合。相邻两层间按照题目给定的规则建立边的关系。 2. **适用算法选择** - 如果不存在负权边,可以采用 **Dijkstra 算法** 来高效求解。 ```python import heapq def dijkstra(graph, start_node): dist = {node: float('inf') for node in graph} dist[start_node] = 0 pq = [(0, start_node)] while pq: current_dist, u = heapq.heappop(pq) if current_dist > dist[u]: continue for v, weight in graph[u]: distance = current_dist + weight if distance < dist[v]: dist[v] = distance heapq.heappush(pq, (distance, v)) return dist ``` - 若存在负权边或者需要多次松弛操作验证更优解,则应选用 **Bellman-Ford 算法** 或其队列优化版本——**SPFA 算法**[^2]。 3. **初始化与边界条件** 设置初始点所在的具体位置以及目标终点的位置关系。特别需要注意的是,由于引入了更多虚拟节点和边,因此要仔细定义起始状态及其权重设置[^1]。 4. **复杂度考量** 构造后的分层图规模可能显著增大,需评估所选算法的时间开销是否会超出允许范围。一般情况下,\( O((V+E)\log V) \) 的 Dijkstra 性能优于线性的 Bellman-Ford (\(O(VE)\)) ,但在稀疏图上 SPFA 可能表现更好。 --- #### 示例实现代码 以下是基于 Python 的简单实现框架,展示如何应用上述方法解决问题: ```python from collections import deque, defaultdict def build_layered_graph(original_graph, layers_count, transition_rule): layered_graph = {} # 初始化各层节点并按规则连通它们 for layer in range(layers_count): for node in original_graph.keys(): key = (layer, node) if key not in layered_graph: layered_graph[key] = [] # 添加同层邻居 for neighbor, cost in original_graph[node]: next_key = (layer, neighbor) layered_graph[key].append((next_key, cost)) # 根据transition rule跨层链接 new_layer, extra_cost = transition_rule(layer, node) if new_layer >= 0 and new_layer < layers_count: cross_key = (new_layer, node) layered_graph[key].append((cross_key, extra_cost)) return layered_graph def spfa(graph, source): distances = defaultdict(lambda : float('inf')) predecessors = {} queue = deque() distances[source] = 0 queue.append(source) while queue: current = queue.popleft() for neighbor, edge_weight in graph.get(current, []): potential_new_distance = distances[current] + edge_weight if potential_new_distance < distances[neighbor]: distances[neighbor] = potential_new_distance predecessors[neighbor] = current if neighbor not in queue: queue.append(neighbor) return dict(distances), predecessors ``` --- #### 注意事项 - 转化过程中务必保持逻辑一致性,确保新增加的边满足实际意义; - 对大规模输入数据预估运行效率,必要时采取剪枝策略减少冗余运算; ---
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值