在统计学和数据分析中,中心趋势和离散程度是描述数据集的重要指标。它们能够帮助我们了解数据的分布和变异程度。本文将介绍如何使用广义估计方程(GEE)方法来计算数据的中心趋势和离散程度,并提供相应的源代码示例。
- 中心趋势的度量
中心趋势是指数据集中的集中位置。常用的度量指标包括均值、中位数和众数。其中,均值是数据集所有观测值的总和除以观测数量,可以用来表示数据的平均水平。中位数是将观测值按照大小排列后位于中间的数值,可以用来表示数据的中间位置。众数是指数据集中出现频率最高的数值,可以用来表示数据的典型取值。
下面是使用Python代码计算数据集的均值、中位数和众数的示例:
import numpy as np
# 生成示例数据
data = np.random.normal(loc=