PCA主成分分析

无监督学习是通过观察来学习,没有一个明确的标签来定义。

PCA主要是用于发现原始数据集中的属性之间不可见的关系和相关性。高度相关的属性是非常相似且多余的。PCA可删除冗余的属性。PCA另一个作用是在不影响重要信息的情况下降低数据的维度。

PCA的执行过程包括一下几步:

(1)计算一个给定数据集的相关或协方差矩阵

(2)找到相关或协方差矩阵的特征值和特征向量

(3)将特征向量矩阵与原始数据集相乘,得到主成分矩阵

下面用一段代码展示PCA原理:

在scikit-learn中也有现成的PCA,咱们直接调用也是可以的。

import pandas as pd
from sklearn.decomposition import PCA


pca_model=PCA(n_components=2)
components =pca_model.fit_transform(data)
components_df = pd.DataFrame(data = components,columns['principal_component_1','principal_component_2'])
print(components_df)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值