1. RMSNorm 归一化层
class RMSNorm(nn.Module):
def __init__(self, dim: int, eps: float = 1e-8):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim)) # 可学习的缩放参数
def _norm(self, x: torch.Tensor):
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x: torch.Tensor):
return self.weight * self._norm(x.float()).type_as(x)
通俗解释
这个部分相当于 数据清理工序,它的作用是 对数据进行归一化(标准化),确保数据的数值分布合理,