CVPR2018 Spotlight 《Decoupled Networks》读后感

首先要明确的最顶层的概念是CNN是一个visual representation learning的过程,所有的convolutional filters wi是学到的features template,每一个convolutional操作就是一个template matching,通过dot-product这种计算方式来量化滑窗位置的image patch xi与convolutional filter(feature template)之间的相似度。这个相似度以一个一维实数表示

那么,我们期待学到什么样的feature(filters)才是最好的feature呢?从分类的角度出发,我们希望一个feature能够很好地discriminate & generalize on 两件事(1). Intra-class variations,即类内差距;(2). Inter-class variations, 即类间差距(semantic difference)。(从分类的角度推广到广义的机器学习任务,则可以认为intra-class variation是wixi之间的engery,而inter-class variation是wixi之间的similarity。)

显然,传统的CNN基于dot-product based 的相似度计算,只能获得一个一维的实数值,又如何能够用一个一维实数去explicitly地表征两种variations呢?这种表征不力的现象,可以理解为dot-product的计算“couples”两种本该分开的variations,从而限制了传统convolution操作的discrimination & generalization power。所谓“couples”,就是传统CNN make a strong assumption that two variations can be represented via a multiplications of norms and cosines into one single value (即dot-product的操作)。

自然地,为了提高convolutional operations的discrimiantion & generalization power,我们就要把coupled的dot-product进行“de-couple(解耦)”。

De-couple(解耦)最直接的理解,就是原本由一个实数表示的卷积(dot-product)结果(即w与x的相似度),现在由两个量,norm (magnitude function

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值