自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(1000)
  • 收藏
  • 关注

原创 经济大环境不好,软件业却“逆风翻盘”!2025上半年这波行情,打工人到底该喜还是该忧?

2025年上半年我国软件和信息技术服务业逆势增长,收入达7.06万亿元,同比增长11.9%。信息技术服务成为支柱产业,占比68.5%,其中云计算、大数据和集成电路设计表现突出。区域发展呈现东强西稳态势,长三角增速达13.7%,上海以18%领跑全国。AI技术正深刻改变行业生态,61.8%开发者已使用AI辅助编程,但复杂创新工作仍需人工主导。未来行业将聚焦云原生与AI融合、软件安全、工业软件国产化等领域,建议从业者提升架构设计、云原生等核心能力,积极拥抱AI工具。

2025-08-04 15:14:01 3532

原创 重磅发布!LangChain 1.0来袭:企业级稳定性提升与开发体验全面优化

LangChain v1.0.0 Alpha版本推出,旨在提升一致性、可维护性与企业级稳定性。主要更新包括:统一代理抽象(create_agent),简化Agent开发;标准化内容模型(content_blocks),统一不同LLM输出格式;底层采用LangGraph作为执行引擎,支持状态持久化、流程控制和异常恢复。企业可通过此版本获得更稳定、标准化的LLM应用开发体验,同时提供了清晰的升级路径与兼容策略。

2025-09-14 07:15:00 389

原创 干货收藏:阿联酋320亿参数K2-Think模型开源,性能媲美20倍参数规模模型!

MBZUAI与G42联合推出开源推理模型K2-Think,320亿参数基于Qwen 2.5构建,数学性能超越参数规模20倍的OpenAI和DeepSeek旗舰模型。通过六大技术创新(思维链监督微调、可验证奖励强化学习等)实现高性能,在Cerebras芯片部署时性能提升10倍。模型完全开源,为数学和科学领域提供特定用途服务,小参数模型经后期训练可媲美更大参数模型。

2025-09-14 07:00:00 527

原创 如何的入门大模型开发者?系统的学习路线指南,超详细步骤助你转型成功,记得收藏!大模型学习宝典

这篇文章系统介绍了大模型的学习路径和应用场景,包括Prompt工程、基于大模型的应用开发、私有知识库、AI Agent、模型微调与训练等方向。作者建议程序员从外到内学习,先掌握Python基础、向量数据库、LangChain框架等工具,再深入机器学习、深度学习、NLP基础知识,最终掌握模型微调、PEFT等高级技术。文章强调大模型生态是普通程序员的广阔蓝海,学习大模型技术对提高工作效率和个人发展都有重要价值。

2025-09-13 16:13:28 625

原创 大语言模型的局限在哪里?李飞飞一年前是怎么说的?

文章探讨AI教母李飞飞关于大语言模型局限性的观点,指出语言模型基于一维token序列处理信息,与物理世界的三维本质存在根本差异。实验证明大模型在物理常识、视觉感知等方面远不及人类,表明其尚未实现真正的智能。真正的智能应是信号感知、物理世界理解与语言能力相结合的产物。

2025-09-13 16:03:44 438

原创 一篇讲透AI Agent架构:五大系统如何打造超级数字员工,实现自主智能的终极奥秘!

文章详解AI Agent的五大核心系统架构:感知系统负责采集环境信息,规划系统将目标转化为执行计划,记忆系统存储上下文知识,工具系统提供外部能力接口,行动系统执行具体操作。这五大系统协同工作,形成从感知到行动的完整智能闭环,使AI Agent能够像"数字员工"一样自主完成复杂任务。理解这套架构,有助于设计出真正自主、可靠、可进化的下一代AI产品。

2025-09-13 16:03:28 652

原创 AI大模型学习攻略:从0开始,万字长文一篇全掌握,速速收藏!LLM

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

2025-09-12 18:08:05 589

原创 大模型前景揭秘:方向介绍、就业分析与保研建议,助你做出明智选择!

摘要:本文从大模型方向介绍、就业分析与建议、保研选择三方面提供实用建议。大模型指参数量庞大、结构复杂的机器学习模型,广泛应用于自然语言处理等领域,就业前景广阔但竞争激烈,需掌握编程、深度学习框架等技能。行业门槛较高,通常要求硕士学历及相关技术能力。文末提供免费AI大模型学习资源,涵盖系统设计、应用开发等七大阶段,助力提升技术能力与就业竞争力。

2025-09-12 17:41:43 643

原创 什么是上下文工程(Context Engineering)?它为何对大模型如此重要?

上下文工程是解决当前AI智能体"数字失忆症"和跨任务知识迁移不足的关键技术。它通过三大技术支柱——上下文获取(动态检索)、上下文处理(结构化知识)和上下文管理(长期记忆系统)——为AI构建完整的认知架构。这一技术使AI从简单的任务执行者进化为能够持续学习、深度推理的智能伙伴,标志着AI发展范式从追求模型规模转向构建功能完备的认知架构,是推动AI从理论走向应用的核心引擎。

2025-09-12 16:46:00 617

原创 【Transformer架构】大模型量化技术详解:让你的模型体积缩小87.5%,速度提升3倍!

本文详细解析了大模型量化技术,将高精度浮点数转换为低精度整数以减小模型体积、提升推理速度并降低能耗。文章介绍了从FP32到INT1等多种量化精度及其适用场景,提供了混合精度量化的实现路径和代码示例,并通过LLaMA和ChatGLM-6B等模型展示了量化实践效果。量化技术能让大模型在保持精度的同时,显著降低存储需求,使模型能在资源受限的设备上高效运行。

2025-09-12 11:15:20 963

原创 2025年中国AI算力基础设施发展趋势深度解析,15页PDF文件免费分享!

【150字摘要】本文提供全套AI大模型学习资源包,包含PDF报告、视频教程、实战案例等免费资料。内容涵盖大模型系统设计、提示词工程、平台开发、知识库应用等7大阶段,适用于电商、物流、健康等多领域。通过学习可掌握模型微调、多模态应用等技能,提升全栈开发能力。资源包内含学习路线图、商业化方案、面试题库等实用资料。微信扫描文末二维码即可免费领取全部内容,适用于AI开发者和转型从业者。

2025-09-12 11:02:39 133

原创 多模态AI学习宝典:197篇顶会论文合集,从技术到应用,助力程序员转型与研究突破!

本文针对当前多模态AI技术的火热趋势,从核心方法与技术、模型架构与训练范式、应用领域、学习场景与挑战四大维度系统梳理多模态研究脉络。作者精选197篇多模态领域顶会论文及对应开源代码,涵盖多模态融合、大模型训练、医学图像分析等热点方向,为程序员和研究者提供全面学习资源,助力快速掌握多模态技术并产出研究成果。

2025-09-11 16:34:44 601

原创 【金九银十】你面试的是哪类AI产品经理?AI产品经理类型深度解析:四大类别与核心职责,找到你的最佳定位!

本文从技术方向(NLP/CV/推荐算法)、业务场景(垂直领域/通用工具)和业务阶段(0-1创新/规模化增长/平台建设)三维度解析AI产品经理类型。无论选择技术翻译官还是行业解题者路线,核心价值在于连接技术与业务,推动AI商业化落地。不同类型需掌握相应行业知识与AI能力,但技术理解、业务转化与跨团队协作是共通核心素养。

2025-09-11 16:30:53 1161

原创 保姆级教程:Qwen-Agent智能体搭建全指南 - 零基础也能轻松上手的AI开发!

本文详细介绍了Qwen-Agent智能体的完整搭建流程,从环境配置到多Agent系统开发。通过RAG示例、工具调用和多Agent路由等场景,展示了如何构建功能丰富的AI智能体。文章提供零基础友好的指导,帮助开发者快速上手,无需AI经验即可实现从简单问答到复杂应用的智能体开发。

2025-09-11 15:02:07 661

原创 企业级数据分析Agent开发避坑指南:六大核心难点与解决方案,打造高价值洞察利器!

在用户(及其领导)想象中,数据分析 Agent 应当是一个"全能分析师":从业务问题出发,自动提出假设,自主拉取和处理数据,完成分析建模,再到业务洞察、汇报结论、跟踪业务监控指标。现实是,企业的数据分析环境比实验室(或 RL 模拟环境)复杂得多。数据存在权限与安全限制,来源和质量参差不齐;业务问题需要背景知识,而模型与报告需要可解释性和强落地性。

2025-09-11 14:50:54 803

原创 AI大模型全景分析:从定义到市场前景,揭秘全球竞争格局与中国企业的崛起!

文章全景分析AI大模型的定义、发展历程、产业链结构、市场前景和竞争格局。大模型已发展到智能体时代,产业链分为基础层、模型层、应用层和支撑服务。全球市场多极化竞争,中国企业竞争力增强。大模型解决方案市场快速增长,2028年预计达211亿元,高附加值场景率先落地。

2025-09-11 14:48:26 430

原创 AI学习者的福音:不容错过的几大人工智能课程资源平台,助你开启AI之旅!

在这个数字时代,AI已经不再是一个陌生的概念,而是成为当今职场中必不可少的工具。AI不仅可以提高工作效率,还可以为我们创造更多的价值。 人工智能课程资源哪里找?这几个AI学习平台不容错过,相信对你入门学习 AI 以及后续进阶非常有用。

2025-09-10 15:52:30 975

原创 程序员转行AI大模型全攻略:后端开发轻松切换大模型应用开发,详细教程助你一步到位!

在人工智能(AI)迅速发展的背景下,从传统的编程领域如Java程序员转向大模型开发是一个既充满挑战也充满机遇的过程。对于 Java 程序员来说,这也是一个实现职业转型、提升薪资待遇的绝佳机遇。

2025-09-10 15:47:43 819

原创 LangChain 1.0智能体中间件详解:让AI智能体轻松落地生产的黑科技!

文章介绍LangChain 1.0新推出的智能体中间件如何解决传统AI智能体框架难以生产落地的问题。中间件提供三大核心能力:全流程干预(模型调用前中后均可控制)、高灵活组合(可像搭积木一样组合多个中间件)、统一框架加开箱即用(提高开发效率)。通过这些功能,开发者无需修改底层代码就能灵活定制AI智能体,实现从Demo到生产级应用的转变,大幅降低开发复杂度和成本。

2025-09-10 15:31:31 560

原创 AI测试平台革命性更新:自动遍历功能,低代码自动化测试的终极解决方案!

AI测试平台推出自动遍历功能,这是一种低代码驱动的自动化测试工具。用户只需提供Web/App入口和配置文件,智能体即可自动遍历测试系统,识别页面结构、验证操作可达性,生成可视化报告。支持真实用户行为模拟,特别适合高频迭代项目,无需编写代码,非开发人员也能快速上手,大幅提升测试效率。

2025-09-10 15:29:10 530

原创 WALL-OSS开源:4.2B参数通用具身智能大模型,超越π0,单卡部署全攻略!

WALL-OSS是自变量机器人团队开源的4.2B参数具身智能基座模型,具备语言、视觉、动作多模态端到端统一输出能力。它采用"共享注意力+专家分流"架构,解决了具身智能"不可能三角"问题,在泛化性、推理能力和动作精度上均超越π0等同类模型。仅需RTX 4090级别显卡即可完成训练部署,开源内容包括完整模型权重、训练代码和部署文档,大幅降低具身智能应用门槛,推动行业发展。

2025-09-10 15:26:27 950

原创 (2025年最新最全)AI大模型工程师学习路线,超详细,收藏我这一篇就够了!!

学习大语言模型(Large Language Model, LLM)需要结合理论知识和实践操作。以下是系统化的学习路径和建议,适合不同基础的学习者:

2025-09-09 16:53:23 1481

原创 (2025年最新最全)大模型就业指南:从入门到就业,AI大模型学习全攻略!

就业方向方面,需要分技术和应用两个层面。技术方向可能包括算法研发、模型优化、数据工程等;应用方向可能有产品经理、行业解决方案、教育等。

2025-09-09 16:37:22 1347

原创 GraphRAG搜索策略全面解析:从基础到漂移搜索,助小白轻松掌握大模型智能问答!

本文详细解析了GraphRAG的四种搜索策略:基础搜索(传统向量RAG)、本地搜索(利用知识图谱实体关系)、全局搜索(MapReduce架构处理宏观问题)和漂移搜索(混合全局与局部搜索)。每种策略都有独特的工作原理、适用场景和技术实现,通过合理选择和组合,GraphRAG能处理从简单事实查询到复杂推理问题的各种场景,实现更智能的问答系统。

2025-09-09 14:14:23 624

原创 一文搞懂Agent?拆解4个层级,面试官不会告诉你的“深入理解“标准!

文章将"深入理解Agent"分为四个层级:概念理解、技术应用、系统优化和架构设计,详细阐述了每个层级的能力要求和面试考察点。同时提供了学习资源推荐,帮助读者从入门到精通Agent开发,掌握从问题分析到方案设计的工程思维,提升在AI Agent时代的竞争力。

2025-09-09 14:12:53 730

原创 为什么有了DeepSeek还要用RAG?通过两个案例,看RAG如何解决大模型的“知识短板”!

本文解析了RAG技术在大模型时代的重要性。尽管DeepSeek等大模型可直接回答问题,但RAG通过检索增强生成方式,解决了大模型处理特定知识时的三大痛点:上下文长度限制、计算成本高和响应慢。RAG不仅能聚焦特定知识,还能控制AI的思考流程,确保专业场景下回答的准确性和一致性。RAG是对大模型的增强而非替代,当需要基于特定知识做出可靠回答时,RAG已成为必选项。

2025-09-09 14:03:55 447

原创 大模型AGI深度解析:定义、应用及就业前景,一文搞清楚大模型是否值得投入!

通用人工智能(AGI)正从单一任务处理向跨领域认知演进,2025年关键突破包括多模态整合和动态环境交互。应用已渗透医疗诊断、金融风控、内容创作等领域,推动产业升级。就业市场呈现结构性变化:技术岗如大模型工程师需求激增(年薪35-200万+),非技术岗需掌握"AI+行业"复合能力。面临幻觉问题、算力成本等挑战,人类在情感智能和创造力方面仍具优势。转型策略强调行业经验与AI工具的结合,建议通过系统学习(如Python基础到LangChain开发)把握AGI时代的就业机遇。

2025-09-08 15:20:39 1678

原创 【26届校招_美团大模型面经】大模型面试宝典:常见问题+解答,收藏备用不迷路!

这篇文章汇总了大模型技术面试常见问题,涵盖模型结构选择、MLA优化、训练流程、长度外推、PPO泛化策略等核心知识点,包含两道算法题,并提供面试辅导资源,是准备大模型岗位面试的技术人员必备参考。

2025-09-08 15:20:19 503

原创 5个超有趣的GitHub开源游戏项目,程序员小白也能轻松上手学习!

本文精选了5个GitHub上的开源游戏项目:城市建造模拟器CubeCity、猜地点游戏WorldGuessr、React复刻的Windows 98扫雷、经典中文DOS游戏库、开源国际象棋平台Lichess等。这些项目涵盖了策略、益智、怀旧等多种类型,代码开源且易于理解,适合程序员学习参考和休闲娱乐,同时也为游戏开发爱好者提供了丰富的学习资源。

2025-09-08 15:13:55 684

原创 AI基础架构知识体系全景指南:从硬件原理到大模型落地的完整学习路径!

本文系统解析了AI基础架构的全技术栈知识体系,涵盖硬件层、开发层、模型层、系统层、部署层和优化层六大维度。从GPU架构、CUDA编程到分布式训练、推理优化,再到企业级部署实践,提供了从入门到精通的完整学习路径。特别强化了云原生AI架构与大模型推理性能优化,为AI工程师、架构师和开发者提供从理论到实战的全链路指导。

2025-09-08 15:11:37 1021

原创 RAG多路召回优化:大模型信息检索的效率倍增器!

文章介绍了多路召回技术,结合向量召回和关键词召回等多种策略,在RAG架构中提升信息检索效率和准确性。阐述了并行召回、串行召回和融合三种实现方式,比较了它们的优缺点和适用场景,强调了多路召回在融合信息、提升性能和抗噪声方面的优势,推荐了BM25与向量召回结合、RRF初排加Dranker精排的流程设计方案。

2025-09-08 15:02:47 863

原创 大模型微调必备:参数选择方法详解!干货,建议收藏!!

文章介绍大模型微调中的两种参数选择方法:基于规则的方法(如BitFit、层选择等)和基于学习的方法(如Child-Tuning)。基于规则方法依赖人工经验选择参数更新,计算效率高但适用范围有限;基于学习方法通过训练自动选择参数子集,能自动选择与任务最相关的参数,但计算成本较高。这些方法能在保持模型性能的同时显著减少计算开销,适用于资源受限的环境。

2025-09-06 08:00:00 1069

原创 【万字长文】大模型训练秘籍:SFT记忆数据,RL实现泛化,一文读懂两种后训练技术!

文章比较了SFT和RL在基础模型后训练中的效果。研究发现SFT倾向于记忆训练数据,难以泛化;而RL在文本规则和视觉环境中均表现出良好泛化能力,并能提升模型视觉识别能力。尽管RL在泛化方面更优,SFT对稳定模型输出格式、支持后续RL训练仍具重要作用。研究通过GeneralPoints和V-IRL环境验证了这些发现。

2025-09-06 07:00:00 630

原创 双非本科的我是如何踏入AI行业的?

文章摘要:作者分享了自己从双非本科毕业生到AI大模型工程师的转型经历,通过7次职场跨越证明AI领域并非高不可攀。从电力系统到游戏支付、直播推荐架构,最终在2023年All in大模型,主导多个AI落地项目。强调职业发展需要迁移能力和持续学习,并提供了大模型学习路线(7阶段)和全套免费学习资源,包括104G资料包、100套商业方案和实战教程,帮助读者实现从入门到进阶的跨越。

2025-09-05 15:48:36 1161

原创 大模型泛化能力揭秘:从死记硬背进化到举一反三、触类旁通!

大模型泛化能力是指AI从死记硬背进化到举一反三、触类旁通的能力。其底层逻辑在于通过统计学习在高维空间中捕捉模式,通过损失函数最小化学习鲁棒特征,构建层次化抽象表示。具体表现为指令、任务、语言和推理泛化。提升泛化能力的关键策略包括高质量数据、Transformer架构、预训练、指令微调和RLHF等技术。未来AI将朝着更高效、更可靠的方向发展。

2025-09-05 15:36:16 924

原创 构建高效AI Agent的必备:prompt设计+Memory管理+Tools设计!

AI Agent与传统聊天机器人有本质区别,它具备记忆、思考和工具调用能力。构建高效AI Agent需三大核心要素:精细的prompt设计(明确任务边界和完成标准)、有效的Memory管理(保持上下文一致性)和实用的Tools设计(标准化专业化工具)。本文通过实战案例分享开发经验与避坑指南,帮助开发者快速掌握AI Agent构建技巧。

2025-09-05 15:28:55 981

原创 传统产品经理终于还是撑不下去了!!2025年AI产品经理终极学习路线,超详细,记得收藏!!

成为一名优秀的AI产品经理,需要具备深厚的技术背景、良好的产品直觉、敏锐的市场洞察力以及出色的沟通协调能力。以下是一份详尽的AI产品经理学习路线,旨在帮助有意进入该领域的学习者建立起坚实的基础,并逐步成长为行业内的专家。

2025-09-04 16:32:56 1020

原创 35岁程序员的逆袭:AI时代,从被取代到成为Agent架构师!

位36岁的资深Java工程师老王在AI浪潮中陷入职业焦虑,担心自己十年积累的技术将被AI取代。经过深入思考,他发现AI并非替代传统开发,而是需要与现有系统嵌套融合。老程序员的核心价值在于为AI构建可靠的基础设施:工作流编排、企业知识库和数据智能体三大领域,正是经验丰富的工程师最能发挥优势的战场。从"执行者"转型为"认知架构师",老王找到了在AI时代的新定位——用业务理解力和系统设计能力为AI应用搭建基础设施。这启示我们:AI不会淘汰经验,而是重塑价值,将程序员从重复编码中解放,转向更具创造力的架构设计。

2025-09-04 16:28:21 857

原创 大模型微调效果90%取决于数据质量:企业级数据集构建全指南!

文章详细介绍了将企业私有数据转化为高质量大模型微调数据集的六阶段流程:规划与准备、数据收集与整理、清洗与预处理、格式化与标注、质量保证与数据集构建、安全维护与迭代。强调数据质量是微调效果的关键因素,而非工具或参数。每个阶段都包含具体操作步骤和工具推荐,帮助企业从零开始构建适合特定任务的高质量训练数据集。

2025-09-04 16:24:32 565

原创 17个GitHub高星项目打造AI编程工作站,程序员提升AI编程效率的必备收藏资源!

本文精选17个GitHub高星Claude Code开源工具,分为工作流编排、后端路由、交互界面、生态扩展和监控度量五大类。这些工具可帮助开发者构建高效AI编程工作站,实现多代理协作、多模型支持、GUI交互、能力增强和成本监控。文章提供作者个人配置方案及快速开始指南,是程序员提升AI编程效率的必备收藏资源。

2025-09-04 16:22:47 696

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除