简介
本文针对当前多模态AI技术的火热趋势,从核心方法与技术、模型架构与训练范式、应用领域、学习场景与挑战四大维度系统梳理多模态研究脉络。作者精选197篇多模态领域顶会论文及对应开源代码,涵盖多模态融合、大模型训练、医学图像分析等热点方向,为程序员和研究者提供全面学习资源,助力快速掌握多模态技术并产出研究成果。
最近程序员就业市场实在癫狂,很多公司把顶会论文也被作为绩效考核重要维度之一,火热方向之一就是多模态。而多模态的爆火是技术突破、应用刚需、数据红利与资本推动的共振结果。对于研究者来说,选择它发文,既能参与前沿技术的探索,又能通过解决实际问题提升自身竞争力。
如今这方向正处于从技术突破向产业渗透的关键阶段。本文将从核心方法与技术、模型架构与训练范式、应用领域、学习场景与挑战这四大类(含10个细分热点),层级拆解多模态研究的学术脉络,帮助大家快速上手发出成果。
每类我都整理了参考论文方便学习,共有197篇(含顶会),且附有相应代码,篇幅有限就不一一展示了,大家可自取完整合集。
一、核心方法与技术
实现多模态融合的具体技术、算法和模块。比如多模态融合、多模态特征融合、多模态数据融合、可解释多模态融合。
参考论文:FedEPA: Enhancing Personalization and Modality Alignment in Multimodal Federated Learning
**方法:**论文提出了一种多模态联邦学习框架FedEPA,通过个性化权重聚合和无监督特征对齐策略,有效融合多模态特征,提升模型在异质数据和有限标签情况下的性能。
创新点:
- 提出个性化加权本地聚合策略,适应本地数据分布,缓解数据异质性影响。
- 设计无监督多模态特征对齐策略,增强特征一致性,确保语义独立性,促进特征多样性。
- 引入多模态特征融合策略,通过自注意力机制整合信息,提升分类性能。
二、模型架构与训练范式
关注模型的宏观设计、规模以及训练的策略和方法。比如多模态大模型、多模态预训练。
参考论文:Video-LaVIT: Unified Video-Language Pre-training with Decoupled Visual-Motional Tokenization
**方法:**论文介绍了一种多模态预训练方法,通过联合建模图像和文本等不同模态的数据,利用对比学习和掩码预测技术进行无监督预训练,以提升模型在多模态任务中的性能。
创新点:
- 提出了一种新的多模态预训练框架,能够同时处理图像和文本等多种模态的数据。
- 采用了对比学习和掩码预测技术,有效对齐不同模态的特征表示。
- 通过大规模无监督数据进行预训练,显著提升了模型在多模态下游任务中的性能。
三、应用领域
将通用的多模态技术应用于解决特定领域的实际问题。比如多模态医学图像、多模态图像融合。
参考论文:BSAFusion: A Bidirectional Stepwise Feature Alignment Network for Unaligned Medical Image Fusion
**方法:**论文介绍了一种用于多模态医学图像分析的方法,通过深度学习技术融合不同模态的图像特征,以提高疾病诊断的准确性。该方法强调利用多模态数据的互补性,增强模型对复杂医学图像的理解和分析能力。
创新点:
- 提出了一种新的多模态医学图像分析框架,能够同时处理多种医学图像模态。
- 利用深度学习技术,有效融合不同模态图像的特征,提升诊断准确性。
- 通过实验验证了该方法在疾病诊断中的有效性和优越性,展示了其在实际应用中的潜力。
四、学习场景与挑战
关注在数据或任务受限等特定挑战下的学习范式。比如小样本学习+多模态、迁移学习+多模态融合。
参考论文:UniGraph2: Learning a Unified Embedding Space to Bind Multimodal Graphs
**方法:**论文提出了一种结合迁移学习和多模态融合的方法。它先用预训练模型提取通用特征,再通过迁移学习应用到多模态任务中,并采用新融合策略整合不同模态的特征,提升模型性能。
创新点:
- 利用预训练模型提取通用特征,为多模态任务提供强大的初始表示。
- 采用迁移学习技术,将预训练模型的特征迁移到具体的多模态任务中,提高任务适应性。
- 提出新颖的多模态融合策略,有效整合不同模态的特征,提升模型性能。
五、AI大模型学习路线
如果你对AI大模型入门感兴趣,那么你需要的话可以点击这里大模型重磅福利:入门进阶全套104G学习资源包免费分享!
这份完整版的大模型 AI 学习和面试资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】
这是一份大模型从零基础到进阶的学习路线大纲全览,小伙伴们记得点个收藏!
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
100套AI大模型商业化落地方案
大模型全套视频教程
200本大模型PDF书籍
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
LLM面试题合集
大模型产品经理资源合集
大模型项目实战合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓