从今天开始我们就要进阶到ComfyUI的学习啦!如果有小伙伴刚来,可以看看往期WebUI的教程。WebUI和ComfyUI的底层都是基于Stable diffusion的AI算法,只是界面不同。WebUI操作界面友好,以输入框按钮为主,而ComfyUI以工作流的形式呈现,操作简单,对小显存友好,更容易复现结果,但是门槛较高,并且目前ComfyUI慢慢成为主流,很多插件更新都是以ComfyUI为主。
配置要求
ComfyUI的运行配置要求要比WebUI更低一些,显存3GB也可运行,但是要流畅跑图,还是推荐下面配置:
显卡:Nvidia的显卡,显存8GB,如果要运行SDXL、FLUX模型则需要12GB以上显存的显卡,高性价比的显卡考虑4060Ti,5060Ti。
CPU:处理器intel i5级别。
内存:32GB或以上。
硬盘:1TB以上固态。
Mac电脑不推荐,很多插件运行不了。
50系显卡兼容问题解决方案:
https://kvy1mwlhfqj.feishu.cn/docx/KFvvdDfLwojhSDxiL0acLWP7njh?from=from_copylink
如果你电脑配置不够又不想升级电脑,可以考虑在线部署ComfyUI:
1、liblib在线ComfyUI,相当于liblib自己使用开源的东西部署了一个在线的ComfyUI,需要会员,节点、工作流和插件都是固定的,不能安装,但它拥有众多工作流和模型社区生态。
2、云部署,相当于你租一台配置很高的云端电脑,需要一定的技术门槛,按时长收费,爱捣鼓的并且有长期需求的可以考虑。
本地安装与部署
ComfyUI主流的安装方法有很多种。
1、官方下载安装:
2、秋叶安装包(推荐):
我们以秋叶整个包为例,下载后是一个.7Z后缀的压缩包,我们解压后放置在一个纯英文并且没有特殊符号的目录下:
打开文件,我们就能看到启动程序文件:
打开绘世启动器,我们就可以看到秋叶启动器界面,和WebUI非常类似:
3、官方客户端桌面版下载安装:
点击下载按钮就可以下载安装包了,安装包108Mb。安装过程也是非常简单方便,有兴趣的小伙伴可以试一下。
秋叶安装包模型插件安装目录
如果你没有安装过WebUI,那么可以按照以下路径放置你的模型和插件:
Comfyui大模型:\ComfyUI\models\checkpoints
Comfyui Lora:\ComfyUI\models\loras
Comfyui VAE:\ComfyUI\models\vae
embeddings:\ComfyUI\models\embeddings
Comfyui放大算法:\ComfyUI\models\upscale_models
controlnet模型:\ComfyUI\models\controlnet
clip vision模型:\ComfyUI\models\clip_vision
comfyui所有插件:\ComfyUI\custom_nodes
ComfyUI与Stablediffusion WebUI共享模型路径
如果你已经按照过WebUI并且下载过很多模型,那么ComfyUI是可以和WebUI共用模型的,没必要复制过来占用硬盘空间,具体操作如下:在ComfyUI安装目录下的ComfyUI文件夹中找到以下文件,删除文件后缀名.example:
用记事本打开这个文件,修改base_path的路径为你的WebUI路径,然后核对一下你的Controlnet模型路径是不是正确,因为有的人把Controlnet模型放在这个路径下:
\sd-webui-aki-v4.10\extensions\sd-webui-controlnet\models
保存一下文件,就可以了,我们再进入ComfyUI,就可以共享WebUI的模型了。
这里直接将该软件分享出来给大家吧~
1.stable diffusion安装包
随着技术的迭代,目前 Stable Diffusion 已经能够生成非常艺术化的图片了,完全有赶超人类的架势,已经有不少工作被这类服务替代,比如制作一个 logo 图片,画一张虚拟老婆照片,画质堪比相机。
最新 Stable Diffusion 除了有win多个版本,就算说底端的显卡也能玩了哦!此外还带来了Mac版本,仅支持macOS 12.3或更高版本。
2.stable diffusion视频合集
我们在学习的时候,往往书籍源码难以理解,阅读困难,这时候视频教程教程是就很适合了,生动形象加上案例实战,一步步带你入坑stable diffusion,科学有趣才能更方便的学习下去。
3.stable diffusion模型下载
stable diffusion往往一开始使用时图片等无法达到理想的生成效果,这时则需要通过使用大量训练数据,调整模型的超参数(如学习率、训练轮数、模型大小等),可以使得模型更好地适应数据集,并生成更加真实、准确、高质量的图像。
4.stable diffusion提示词
提示词是构建由文本到图像模型解释和理解的单词的过程。可以把它理解为你告诉 AI 模型要画什么而需要说的语言,整个SD学习过程中都离不开这本提示词手册。
5.SD从0到落地实战演练
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名SD大神的正确特征了。
这份完整版的stable diffusion资料我已经打包好,需要的点击下方插件,即可前往免费领取!