手把手教学!ComfyUI一键安装+节点配置|比Stable Diffusion更简单(含中文整合包)

从今天开始我们就要进阶到ComfyUI的学习啦!如果有小伙伴刚来,可以看看往期WebUI的教程。WebUI和ComfyUI的底层都是基于Stable diffusion的AI算法,只是界面不同。WebUI操作界面友好,以输入框按钮为主,而ComfyUI以工作流的形式呈现,操作简单,对小显存友好,更容易复现结果,但是门槛较高,并且目前ComfyUI慢慢成为主流,很多插件更新都是以ComfyUI为主。

配置要求

ComfyUI的运行配置要求要比WebUI更低一些,显存3GB也可运行,但是要流畅跑图,还是推荐下面配置:

显卡:Nvidia的显卡,显存8GB,如果要运行SDXL、FLUX模型则需要12GB以上显存的显卡,高性价比的显卡考虑4060Ti,5060Ti。

CPU:处理器intel i5级别。

内存:32GB或以上。

硬盘:1TB以上固态。

Mac电脑不推荐,很多插件运行不了。

50系显卡兼容问题解决方案:

https://kvy1mwlhfqj.feishu.cn/docx/KFvvdDfLwojhSDxiL0acLWP7njh?from=from_copylink

如果你电脑配置不够又不想升级电脑,可以考虑在线部署ComfyUI:

1、liblib在线ComfyUI,相当于liblib自己使用开源的东西部署了一个在线的ComfyUI,需要会员,节点、工作流和插件都是固定的,不能安装,但它拥有众多工作流和模型社区生态。

2、云部署,相当于你租一台配置很高的云端电脑,需要一定的技术门槛,按时长收费,爱捣鼓的并且有长期需求的可以考虑。

本地安装与部署

ComfyUI主流的安装方法有很多种。

1、官方下载安装:

2、秋叶安装包(推荐):

我们以秋叶整个包为例,下载后是一个.7Z后缀的压缩包,我们解压后放置在一个纯英文并且没有特殊符号的目录下:

图片

打开文件,我们就能看到启动程序文件:

图片

打开绘世启动器,我们就可以看到秋叶启动器界面,和WebUI非常类似:

图片

3、官方客户端桌面版下载安装:

图片

点击下载按钮就可以下载安装包了,安装包108Mb。安装过程也是非常简单方便,有兴趣的小伙伴可以试一下。

秋叶安装包模型插件安装目录

如果你没有安装过WebUI,那么可以按照以下路径放置你的模型和插件:

Comfyui大模型:\ComfyUI\models\checkpoints

Comfyui Lora:\ComfyUI\models\loras

Comfyui VAE:\ComfyUI\models\vae

embeddings:\ComfyUI\models\embeddings

Comfyui放大算法:\ComfyUI\models\upscale_models

controlnet模型:\ComfyUI\models\controlnet

clip vision模型:\ComfyUI\models\clip_vision

comfyui所有插件:\ComfyUI\custom_nodes

ComfyUI与Stablediffusion WebUI共享模型路径

如果你已经按照过WebUI并且下载过很多模型,那么ComfyUI是可以和WebUI共用模型的,没必要复制过来占用硬盘空间,具体操作如下:在ComfyUI安装目录下的ComfyUI文件夹中找到以下文件,删除文件后缀名.example:

图片

用记事本打开这个文件,修改base_path的路径为你的WebUI路径,然后核对一下你的Controlnet模型路径是不是正确,因为有的人把Controlnet模型放在这个路径下:

\sd-webui-aki-v4.10\extensions\sd-webui-controlnet\models

图片

保存一下文件,就可以了,我们再进入ComfyUI,就可以共享WebUI的模型了。

这里直接将该软件分享出来给大家吧~

1.stable diffusion安装包

随着技术的迭代,目前 Stable Diffusion 已经能够生成非常艺术化的图片了,完全有赶超人类的架势,已经有不少工作被这类服务替代,比如制作一个 logo 图片,画一张虚拟老婆照片,画质堪比相机。

最新 Stable Diffusion 除了有win多个版本,就算说底端的显卡也能玩了哦!此外还带来了Mac版本,仅支持macOS 12.3或更高版本

在这里插入图片描述

2.stable diffusion视频合集

我们在学习的时候,往往书籍源码难以理解,阅读困难,这时候视频教程教程是就很适合了,生动形象加上案例实战,一步步带你入坑stable diffusion,科学有趣才能更方便的学习下去。

在这里插入图片描述

3.stable diffusion模型下载

stable diffusion往往一开始使用时图片等无法达到理想的生成效果,这时则需要通过使用大量训练数据,调整模型的超参数(如学习率、训练轮数、模型大小等),可以使得模型更好地适应数据集,并生成更加真实、准确、高质量的图像。

在这里插入图片描述

4.stable diffusion提示词

提示词是构建由文本到图像模型解释和理解的单词的过程。可以把它理解为你告诉 AI 模型要画什么而需要说的语言,整个SD学习过程中都离不开这本提示词手册。

在这里插入图片描述

5.SD从0到落地实战演练

在这里插入图片描述

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名SD大神的正确特征了。

这份完整版的stable diffusion资料我已经打包好,需要的点击下方插件,即可前往免费领取!

在这里插入图片描述

### ComfyUI 电商工作流实现与配置 #### 选择ComfyUI的理由及其优势 ComfyUI 是一款专为电商设计的强大图像处理工具,能够显著提升工作效率。通过一系列预设的工作流节点和插件支持,可以轻松完成诸如模特换装、背景替换等复杂操作[^2]。 #### 下载安装方法 为了开始使用ComfyUI,在官方文档中提供了详细的下载指南。确保按照说明正确设置环境变量,并安装必要的依赖库。这一步骤至关重要,因为任何遗漏都可能导致后续流程出现问题。 #### 模型与插件的安装 除了基础软件外,还需要额外加载特定于电商应用的模型和插件。这些资源通常可以从社区论坛获取,或是购买商业授权版本获得专业的服务和支持。特别推荐用于增强效果的 icLight 和 Image Detail Transfer 插件,它们能极大改善最终输出的质量[^4]。 #### 工作流节点和底层逻辑详解 构建一个完整的电商图片处理流水线涉及多个关键步骤: - **输入源准备**:上传原始商品照片至平台; - **初步调整**:利用内置滤镜去除不必要的干扰因素; - **主体分割**:精确提取目标对象轮廓以便后期合成; - **背景创建/选取**:挑选合适的替代背景素材; - **融合优化**:将分离出来的物体无缝嵌入新环境中; - **光照匹配**:模拟自然光源照射角度使画面加逼真; - **细节修饰**:最后对成品进行全面润色直至满意为止[^1]。 ```python import comfyui as cui # 初始化项目实例 project = cui.Project() # 添加初始图像文件路径到队列中 project.add_image('path/to/source/image.jpg') # 应用基本清理过滤器移除噪点和其他瑕疵 project.apply_filter(cui.BasicCleanup()) # 执行智能裁剪以聚焦主要展示区域 project.smart_crop() # 改背景颜色或图案 new_background = 'path/to/new/background.png' project.change_background(new_background) # 调整整体色调使其看起来为协调统一 project.adjust_tone() # 导出编辑后的高质量JPEG格式图片 output_path = 'path/to/output/final_product.jpeg' project.export(output_path) ``` #### 遮罩修改重绘(Inpainting)模块的应用 当遇到难以自动识别的情况时,可以通过手动绘制蒙版来指导算法好地理解和处理特殊部位。此过程不仅限于简单的擦除修复,还可以用来创造性的改变服装样式或其他视觉特征。 #### SDXL工作流手把手搭建 针对高阶的需求,如批量生产带有不同风格变化的商品宣传照,则需进一步探索 Stable Diffusion eXtended Library (SDXL),这是一个基于深度学习框架开发而成的功能扩展,允许用户自定义参数组合从而生成独一无二的效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值