许多外国开发者已经利用DeepSeek打造了各种应用级项目。如果你也有兴趣使用DeepSeek,这将使你能够轻松掌握人工智能这一复杂的概念。如果你将DeepSeek部署在自己的电脑上,你就能创建并训练属于你自己的AI数据库。
今天我们将带你一步步了解,如何在本地环境中部署DeepSeek,支持Mac、Windows和Linux系统。整个过程简单易懂,特别适合入门者。
一、什么是DeepSeek
DeepSeek R1 是一款开源的AI模型,它与 OpenAI 的 o1 和 Claude 3.5 Sonnet 等顶级模型竞争,特别是在数学、编程和推理等任务上表现出色。它是免费的、私密的,并且支持在本地硬件上离线运行。
DeepSeek R1 提供了多个版本,涵盖从轻量级的1.5B参数模型到功能强大的70B参数版本。从技术角度来看,它基于 Qwen 7B 架构,经过精简和优化,确保在保持强大性能的同时,提升了运行效率。
DeepSeek 的最大亮点是,它能够与一些领先的商业AI模型相媲美,但作为开源项目,你可以在本地运行它,完全不依赖云服务器,从而更好地掌控你的数据。
二、为什么要在本地运行?
将AI模型部署在本地有以下几个显著优势:
- 隐私保护:所有数据都存储在你的设备上,避免了敏感信息泄露的风险。
- 成本节省:DeepSeek R1 完全免费,无需支付订阅或使用费用。
- 完全控制:你可以随时对模型进行微调和实验,不依赖任何外部平台。
三、硬件要求
部署DeepSeek对电脑硬件有要求,以下是收集的信息:
(1)MAC
(2)Windows
考虑到每个人的硬件配置各异,如果按照高端配置来编写 DeepSeek 的本地安装教程,很多人可能无法顺利运行,反而浪费了大家的时间,那这样的教程就失去了意义。
因此,我们参考了 Quora、Reddit、Substack、知乎和 CSDN 上的多位专家的安装经验,选择了一个硬件要求最低、甚至可以使用 CPU 运行的 R1 版本进行演示。
四、安装步骤
步骤1、安装Ollama
为了在本地成功运行 DeepSeek R1,我们需要借助 Ollama,它是一个专为在本地计算机上运行AI模型而设计的工具。
Ollama 官网:https://ollama.com/download
下载Ollama后,根据以下步骤安装:
安装完成后,Ollama 提供了一个简单的方法,可以直接通过终端提取并运行模型。
步骤2、拉取 DeepSeek R1 模型
Ollama 支持多个版本的 DeepSeek R1。模型越大,智能程度越高,但所需的 GPU 配置也越强。
以下是可选的版本:
- 1.5B(最小版本)
- 8B
- 14B
- 32B
- 70B(最大、最智能)
具体模型:https://ollama.com/search
本教程将安装一个基础级模型,大家可以根据自己的硬件条件选择适合的版本。
由于 Ollama 部署的是量化版本,这使得显存需求大幅降低。通常情况下,8G 显存足够支持 8B 级别模型,而 24G 显存则适配 32B 模型。
如果你只有集成显卡,仍然想试试,可以下载 lm-studio 软件,它内置了模型下载功能,更加适合新手。
运行 1.5B 或者 7B 模型
-
打开终端:
-
- Mac:使用
Command + Space
打开 Spotlight,输入 “Terminal” 并打开。 - Windows:按
Win + R
,在运行框中输入 “cmd”;或者按Win + X
,选择“Windows PowerShell”或“命令提示符”来打开终端窗口。
- Mac:使用
-
运行以下指令:
ollama run deepseek-r1:1.5b
这个命令会提取 1.5B 模型并将其设置为本地运行。
如果出现错误,可以尝试以下指令:
ollama run deepseek-r1
该命令默认下载 7B 大小的模型。
根据网络速度的不同,下载过程可能会有些慢,如果你的网速较慢,可能需要等待约 20 分钟左右。
一旦下载完成,模型就可以开始运行了。
步骤3、安装聊天框
完成上述步骤后,说明你已经在电脑上成功部署了 DeepSeek,可以通过终端与 DeepSeek R1 进行交互。不过,如果你希望拥有更加流畅和直观的交互体验,可以使用 GUI(图形用户界面)。
一般来说,Chatbox 是与本地模型集成的常见工具,它是一个免费的桌面客户端,注重隐私保护。
你可以从以下链接下载 Chatbox:
官网:https://chatboxai.app/en#
安装完成后,在选择配置API模型那里选择“Ollama API”;
将 API 主机设置为:http://127.0.0.1:11434
选择 DeepSeek R1 作为活动模型
保存
完成后就是这样:
到这里,你的 DeepSeek 部署就完成了。你可以根据自己的需求训练 DeepSeek,将其打造成为一个私有的资料库,随时为你提供支持。
五、演示
你可以测试 DeepSeek 的能力,看看它如何处理任务。例如,尝试让它用 Python 编写一个吃豆人的游戏代码。
Prompt: Make a Pac-Man game in Python.
你将得到类似以下的输出:
import pygame
import random
# Initialize Pygame
pygame.init()
# Game window dimensions
WIDTH = 800
HEIGHT = 600
window = pygame.display.set_mode((WIDTH, HEIGHT))
pygame.display.set_caption(“Pac-Man Game”)
# Colors
BLACK = (0, 0, 0)
WHITE = (255, 255, 255)
RED = (255, 0, 0)
# Pac-Man properties
pacman_size = 20
speed = 3
# Directions: up, down, left, right
directions = [(-1, 0), (1, 0), (0, -1), (0, 1)]
# Game clock
clock = pygame.time.Clock()
# Initialize game loop
running = True
while running:
# Fill the window with black color
window.fill(BLACK)
# Clear previous frames
pygame.display.flip()
# Move Pac-Man
for event in pygame.event.get():
if event.type == pygame.QUIT:
running = False
elif event.type == pygame.KEYDOWN:
key_direction = None
if event.key == pygame.K_UP and pacman_y - pacman_size >= 0:
key_direction = (-1, 0)
elif event.key == pygame.K_DOWN and pacman_y + pacman_size <= HEIGHT:
key_direction = (1, 0)
elif event.key == pygame.K_LEFT and pacman_x - pacman_size >= 0:
key_direction = (0, -1)
elif event.key == pygame.K_RIGHT and pacman_x + pacman_size <= WIDTH:
key_direction = (0, 1)
if key_direction is not None:
direction = key_direction
move_count += 1
\# Check for wall collisions
new_pacman_pos = (pacman_x + direction[0] * move_count,
pacman_y + direction[1] * move_count)
if new_pacman_pos in walls:
continue
pacman_x, pacman_y = new_pacman_pos
# Draw Pac-Man
pygame.draw.circle(window, WHITE, (pacman_x, pacman_y), pacman_size)
# Update the display
pygame.display.flip()
# Limit the frame rate to 60 FPS
clock.tick(60)
# Quit Pygame
pygame.quit()
以上就是今天的全部教程。无论你是 AI 爱好者、开发者,还是只是对本地 AI 感到好奇,都可以尝试一下 DeepSeek R1。通过使用 Ollama 和 Chatbox 等工具,设置过程非常简单,效果也非常出色。希望这篇教程能帮助你更好地掌握和体验 DeepSeek!
DeepSeek无疑是2025开年AI圈的一匹黑马,在一众AI大模型中,DeepSeek以低价高性能的优势脱颖而出。DeepSeek的上线实现了AI界的又一大突破,各大科技巨头都火速出手,争先抢占DeepSeek大模型的流量风口。
DeepSeek的爆火,远不止于此。它是一场属于每个人的科技革命,一次打破界限的机会,一次让普通人也能逆袭契机。
DeepSeek的优点
掌握DeepSeek对于转行大模型领域的人来说是一个很大的优势,目前懂得大模型技术方面的人才很稀缺,而DeepSeek就是一个突破口。现在越来越多的人才都想往大模型方向转行,对于想要转行创业,提升自我的人来说是一个不可多得的机会。
关于AI大模型技术储备
学好 AI大模型 不论是就业还是在工作技能提升上都不错,但要学会 AI大模型 还是要有一个学习规划。最后大家分享一份全套的 AI大模型 学习资料,给那些想学习 AI大模型 的小伙伴们一点帮助!
感兴趣的小伙伴,赠送全套AI大模型学习资料和安装工具,包含Agent行业报告、精品AI大模型学习书籍手册、视频教程、最新实战学习等录播视频,具体看下方。
需要的可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

如何学习大模型 AI ?
🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
这份完整版的学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】
