简介
本文为程序员提供了系统性的大模型与智能体开发学习路线,从机器学习与深度学习基础开始,深入NLP、大模型架构训练及智能体开发技术。文章推荐了数学、机器学习、深度学习到大模型应用的关键学习路径和实用资源,强调了系统性学习与实践相结合的重要性,帮助普通程序员顺利转型到这一热门技术领域。
在人工智能快速发展的今天,大模型(如GPT、LLaMA等)和智能体(如AutoGPT、LangChain应用)的开发正成为技术领域的热门方向。如果你对这方面感兴趣,希望转向这一领域,但面对庞大的知识体系,往往不知从何入手。本文提供一份务实的学习路线,帮助普通程序员系统性地过渡到大模型与智能体开发。
1. 夯实基础:机器学习与深度学习
大模型的核心是深度学习,因此首先要掌握基础理论:
(1)数学基础
- 线性代数:矩阵运算、特征值分解(如SVD)。
- 概率与统计:贝叶斯定理、概率分布、极大似然估计。
- 微积分:梯度下降、链式法则(反向传播的基础)。
(2)机器学习基础
- 监督学习(分类、回归) vs. 无监督学习(聚类、降维)。
- 经典算法:决策树、SVM、随机森林(有助于理解模型优化)。
- 推荐资源:
- 书籍:《机器学习》(周志华)、《Pattern Recognition and Machine Learning》(Bishop)。
- 课程:吴恩达《Machine Learning》(Coursera)。
(3)深度学习入门
- 神经网络基础(前向传播、反向传播)。
- CNN(计算机视觉)、RNN/LSTM(序列建模)。
- 框架:PyTorch或TensorFlow(推荐PyTorch,大模型开发更常用)。
- 推荐资源:
- 《Deep Learning》(Ian Goodfellow)。
- 李沐《动手学深度学习》(PyTorch版)。
2. 深入大模型技术
掌握基础后,可以进入大模型相关的核心技术:
(1)自然语言处理(NLP)基础
- 词嵌入(Word2Vec、GloVe)。
- Transformer架构(Self-Attention、Encoder-Decoder)。
- Hugging Face生态(
transformers
库的使用)。 - 推荐资源:
- 《Speech and Language Processing》(Jurafsky)。
- Hugging Face官方教程。
(2)大模型架构与训练
- GPT、BERT、LLaMA等模型的原理。
- 预训练(Pretraining) vs. 微调(Fine-tuning)。
- 参数高效微调技术(LoRA、Adapter)。
- 分布式训练(数据并行、模型并行)。
- 推荐资源:
- 论文:《Attention Is All You Need》(Transformer原始论文)。
- 开源项目:LLaMA、Pythia的代码阅读。
(3)大模型应用开发
- 使用API(如OpenAI、Claude)构建应用。
- LangChain框架(构建智能体、RAG应用)。
- 本地部署开源模型(如Llama.cpp、vLLM)。
- 推荐实践:
- 用LangChain搭建一个知识问答机器人。
- 微调一个小型LLM(如Mistral-7B)。
3. 智能体(Agent)开发
智能体是大模型的进阶方向,核心是让模型具备自主决策和工具调用能力:
(1)基础概念
- ReAct框架(推理+行动)。
- 工具使用(如搜索、计算、API调用)。
- 记忆机制(短期记忆 vs. 长期记忆)。
(2)开发工具
- LangChain(Agent、Tools、Memory模块)。
- AutoGPT、BabyAGI(自主智能体案例研究)。
- 多模态智能体(结合视觉、语音等)。
(3)实践建议
- 用LangChain构建一个能联网搜索的智能体。
- 尝试AutoGPT,分析其任务分解逻辑。
4. 持续学习与社区参与
- 关注最新论文(ArXiv、Papers With Code)。
- 参与开源项目(Hugging Face、LangChain)。
- 参加AI比赛(Kaggle、天池)。
5.关键学习路径
- 基础:机器学习 → 深度学习 → NLP。
- 进阶:Transformer → 大模型训练 → 微调技术。
- 应用:LangChain → 智能体开发 → 业务落地。
转向大模型开发并非一蹴而就,但通过系统性学习+实践,普通程序员完全可以掌握这项技术。建议从一个小项目开始(如基于GPT的聊天机器人),逐步深入。
技术。
3. 应用:LangChain → 智能体开发 → 业务落地。
转向大模型开发并非一蹴而就,但通过系统性学习+实践,普通程序员完全可以掌握这项技术。建议从一个小项目开始(如基于GPT的聊天机器人),逐步深入。
技术迭代很快,但扎实的基础和持续的学习能力才是核心竞争力。
6.AI大模型学习和面试资源
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习和面试资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓