方案亮点
极致算力:瑞芯微RK3588国产平台,6TOPS高性能NPU,支持复杂神经网络推理;
实时检测:YOLOv5s模型,轻松实现640x640分辨率,49fps检测速度;
多场景适配:工业/医疗/安防等应用领域。
技术原理解析
YOLO简介
YOLO(You Only Look Once)是一种基于深度学习的目标检测算法。YOLO把目标检测转变为一个回归问题,通过一次遍历即可同时预测图像中物体的位置和类别。相较与传统的目标检测方法,YOLO的主要特点是速度快且准确度较高,能够在实时场景下实现快速的目标检测,适用于目标识别跟踪、自动驾驶、工业质检等需要实时处理的场景。
图1
YOLOv5优势
YOLOv5代码开源,可在多种操作系统和硬件平台上运行,并且支持深度学习框架,这使得其更易于使用和部署。
(1)高检测速度:由于YOLOv5采用了单阶段的目标检测架构,它能够在保证一定检测精度的前提下,实现非常高的检测速度。
(2)高精度检测:通过不断优化网络结构和训练方法,YOLOv5在模型的感知能力和对小尺寸目标的检测准确性上有了很大的提升。它能够准确地定位目