LSTM模型介绍

LSTM模型,是循环神经网络的一种变体,可以很有效的解决简单循环神经网络的梯度爆炸或消失问题。

新的内部状态LSTM网络引入一个新的内部状态Ct专门进行线性的循环信息传递,同时(非线性)输出信息给隐藏层的外部状态ht。LSTM网络中的门是一种软门,取值在(0,1)之间,表示以一定的比例运行信息通过。

                                                             

遗忘门ft,控制上一时刻的内部状态ct-1需要遗忘多少信息。

输入门it,控制当前时刻的候选状态有多少信息需要保存。

(ct 非线性函数得到的候选状态)

输出门ot,控制当前时刻的内部状态ct有多少信息需要输出给外部状态ht

                                                            

ft=0,it=1时,记忆单元将历史信息清空,并将候选状态向量写入。

ft=1,it=0时,记忆单元将复制上一时刻的内容,不写入新的信息。

其中


(tanh)为logistic函数,其输出区间为(0,1),xt为当前时刻的输入,ht-1为上一时刻的外部状态。

 循环神经网络中的隐状态h存储了历史信息,可以看作时一种记忆。在简单循环网络中,隐状态每个时刻都会被重写,因此可以看作是一种短期记忆。在神经网络中,长期记忆可以看作时网络参数,隐含了从训练数据中学到的经验,并更新周期要远远慢于短期记忆。而在LSTM网络中,记忆单元c 可以在某个时刻捕捉到某个关键信息,并由能力将词关键信息保存一定的时间间隔。记忆单元c中保存信息的生命周期要长于短期记忆h,但又远远短于长期记忆,因此称为长的短期记忆。

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值