- 博客(2465)
- 资源 (9)
- 收藏
- 关注

原创 Elastic 线下 Meetup 将于 2025 年 9 月 6 号下午在成都举行
2025年9月6日,ElasticMeetup成都站将在腾讯成都大厦举办。活动由Elastic、腾讯和新智锦绣联合主办,聚焦AI驱动的搜索技术发展。主要内容包括:Elastic社区布道师刘晓国讲解向量搜索和RAG技术;腾讯云专家张小伟介绍ESServerless日志分析方案;Elastic架构师李捷分享AgenticRAG构建经验。活动包含主题演讲、茶歇交流及抽奖环节,需提前实名报名。
2025-07-31 11:02:20
1651

原创 Elastic:如何成为一名 Elastic 认证工程师,Elastic 认证分析师及 Elastic 认证可观测性工程师
Elasticsearch 无疑是是目前世界上最为流行的大数据搜索引擎。根据 DB - Engines 的统计,Elasticsearch 雄踞排行榜第一名,并且市场还在不断地扩大:能够成为一名 Elastic 认证工程师也是很多开发者的梦想。这个代表了 Elastic 的最高认证,在业界也得到了很高的认知度。得到认证的工程师,必须除了具有丰富的 Elastic Stack 知识,而且必须有丰富的操作及有效的解决问题的能力。拥有这个认证证书,也代表了个人及公司的荣誉。针对个人的好处是,你可以..
2020-10-28 11:54:13
25879
19

原创 Elastic:开发者上手指南
你们好,我是Elastic的刘晓国。如果大家想开始学习Elastic的话,那么这里将是你理想的学习园地。在我的博客几乎涵盖了你想学习的许多方面。在这里,我来讲述一下作为一个菜鸟该如何阅读我的这些博客文章。我们可以按照如下的步骤来学习:1)Elasticsearch简介:对Elasticsearch做了一个简单的介绍2)Elasticsearch中的一些重要概念:cluster,n..........................................................
2020-02-25 20:01:55
165871
98

原创 Elastic:培训视频 - 在生产环境中配置 Fleet Server 和 Elastic Agent 之间的安全
在这篇文章中,我将会把我写的有些内容录制成视频,供大家参考。希望对大家有所帮助。优酷的视频频道地址在这里。Elastic 简介及Elastic Stack 安装:优酷,腾讯 Elastic Stack docker 部署:优酷,腾讯 Elasticsearch中的一些重要概念(Cluster/Shards/Replica/Document/Type/Index):优酷,腾讯 开始使用El...............
2020-01-06 15:31:54
17765
12

原创 Elasticsearch 简介
Elasticsearch是一个非常强大的搜索引擎。它目前被广泛地使用于各个IT公司。Elasticsearch是由Elastic公司创建并开源维护的。它的开源代码位于https://github.com/elastic/elasticsearch。同时,Elastic公司也拥有Logstash及Kibana开源项目。这个三个开源项目组合在一起,就形成了 ELK软件栈。他们三个共同形成了一个强大的...
2019-08-08 16:04:31
174782
32
翻译 Elastic CEO 表示向量数据库 “从来不是一门生意”,正值 Pinecone 出售谈判期间
Elastic CEO驳斥向量数据库商业模式,称Pinecone"从不是独立业务"。Elastic最新财报显示业绩强劲,收入增长20%至4.15亿美元,云业务增长24%。CEO Kulkarni强调公司专注于非结构化数据的"搜索AI"定位,认为向量数据库仅是功能而非独立业务。他对比Snowflake和Databricks的结构化数据处理优势,指出Elastic的混合搜索方法(结合关键词、向量和重排序)更具优势。Kulkarni还强调开源战略的价值,认为提供选择权是赢得
2025-09-06 10:19:07
28
原创 什么是上下文工程 (Context Engineering)?
摘要:上下文工程是为大语言模型提供精准信息的一系列实践,确保其输出准确可靠。文章介绍了五个关键组件:1) RAG架构模式,通过检索系统增强LLM结果;2) 提示工程,优化输入指令;3) 记忆管理,包括对话历史和长期记忆;4) 结构化输出,便于系统集成;5) 工具调用,扩展LLM能力。作者指出合理组合这些元素能有效解决LLM的幻觉、知识局限等问题,并分享了Elasticsearch在构建AI应用中的实践案例。文章最后提供了相关资源链接,供读者深入探索这一新兴领域。
2025-09-06 08:00:00
543
原创 转变数据交互:在 Amazon Bedrock AgentCore Runtime 上部署 Elastic 的 MCP 服务器以构建 agentic AI 应用程序
本文介绍了Elastic与AWS合作开发的解决方案,通过在Amazon Bedrock Agent Core Runtime平台上部署Elastic的Model Context Protocol (MCP)服务器,将复杂的数据库查询转化为自然语言对话。该方案结合Elasticsearch搜索功能与AWS无服务器AI基础设施,使业务分析师等用户能通过简单英文提问获取精确数据。MCP协议支持动态工具发现和结构化响应,Amazon Bedrock提供安全认证和会话管理。文章详细介绍了从部署ECR容器到配置Pyth
2025-09-05 16:25:08
725
原创 Elasticsearch 的 JVM 基础知识:指标、内存和监控
本文介绍了Elasticsearch中JVM的核心概念及内存管理机制。作为基于Java的搜索引擎,Elasticsearch依赖JVM提供平台无关的运行环境。文章详细解析了JVM堆内存结构(新生代Eden/Survivor区、老年代)和G1垃圾回收器的工作原理,并提供了通过Elasticsearch API(如_nodes/_all/jvm)和JDK工具(jstat)监控JVM指标的方法。虽然Elasticsearch默认JVM设置已优化大多数场景,但了解这些机制有助于排查内存问题(如OOM错误)。最后强调
2025-09-04 10:07:59
1286
原创 Elasticsearch:向量搜索过滤 - 保持相关性
本文探讨了Elasticsearch和Apache Lucene中向量搜索的过滤机制。文章指出,仅靠向量搜索无法满足精准搜索需求,必须结合过滤条件来缩小结果范围。作者详细比较了精确搜索和近似搜索两种方式的过滤实现:精确搜索通过预过滤提升性能,而近似搜索则存在前过滤和后过滤两种策略,各有优缺点。文中还介绍了文档级安全过滤等优化方法,并建议根据过滤条件严格程度选择搜索方式。最后强调,合理运用过滤技术对构建高效、准确的搜索系统至关重要。
2025-09-04 09:40:25
1174
原创 转型 IT 服务台:Elastic 的 Search AI 平台如何强化 Salesforce Service Cloud
Elastic公司利用其Search AI平台优化Salesforce Service Cloud的IT支持服务,通过两种路径提升效率:AI实时解答和工单升级处理。该方案集成ElasticGPT与Salesforce工作流,自动填充工单信息并减少人工干预,同时通过可观测性工具监控性能。案例展示了该技术如何将企业知识库与即时AI支持结合,在保持人工处理复杂问题的同时显著提升支持效率。Elastic强调这一"customer zero"实践验证了生成式AI在企业支持系统中的实用价值,并展示了
2025-09-03 08:01:51
779
原创 可观测性差距:为什么你的监控策略还没准备好应对即将到来的变化
摘要:随着系统架构从单体应用转向微服务和Kubernetes,可观测性差距日益凸显。传统监控工具难以应对指数级增长的复杂性,采样数据会丢失关键信号。OpenTelemetry通过供应商中立性和标准化元数据解决了基础问题,而关联技术(如traceID)和wide-events数据结构能实现跨信号的无缝调查。AI驱动的分析利用丰富上下文可大幅缩短故障诊断时间。建议优先评估日志质量、采用OpenTelemetry,并投资现代化存储架构而非粗暴采样,以应对持续增长的复杂性挑战。 (149字)
2025-09-02 10:34:52
836
原创 在 Elasticsearch 中使用用户行为分析:使用 UBI 和 search-ui 创建一个应用程序
本文介绍了如何在Elasticsearch中使用用户行为洞察(UBI)功能,通过search-ui构建一个图书搜索应用来收集用户行为数据。内容包括:1)加载示例图书数据;2)创建search-ui应用程序并集成Elasticsearch连接器;3)配置后端服务处理UBI事件;4)实现搜索和点击结果时的UBI事件跟踪;5)收集用户设备、位置等附加信息。该方案将用户行为数据自动索引到ubi_queries和ubi_events两个索引中,通过唯一ID关联,帮助开发者分析用户行为并优化搜索体验。
2025-09-02 07:56:12
1106
原创 Observability:如何在隔离环境中部署 Elastic Agents
本文介绍了在隔离网络环境中部署ElasticAgent的自动化解决方案artifacts-bundler。该工具通过批量下载官方artifact、智能打包并支持本地NGINX容器部署,解决了受限环境下的更新难题。文章详细演示了从下载到部署的全流程,包括裸机/容器两种部署方式,并强调了ETag配置等关键技术细节。该方案已成功应用于政府、医疗等安全敏感领域,将原本数小时的手工操作简化为单一命令,显著提升了隔离环境下的ElasticStack部署效率。
2025-08-31 10:03:33
813
原创 Elasticsearch:Semantic text 字段类型
文章摘要:介绍了Elasticsearch中semantic_text字段类型的核心功能与应用场景,该字段通过自动生成向量嵌入支持语义搜索,兼容稀疏和密集向量。重点解析了推理端点配置、文本自动分块机制、查询方式及版本特性差异,包括9.1.0的BBQ量化支持和9.2的chunks格式优化。同时涵盖了安装部署、模型加载、端点管理、长文本处理策略(如E5模型的512token限制)以及字段映射的注意事项,最后指出当前版本在嵌套字段和跨集群功能上的局限性。
2025-08-30 12:36:21
1303
原创 Burgan Bank Türkiye 如何借助 Elastic 改造可观测性和安全性
**摘要:**Burgan Bank Türkiye通过部署Elastic技术实现IT系统可观测性革新,将事件响应时间缩短90%。该银行最初在OpenShift上遇到存储限制后,转向裸机部署Elastic集群,构建包含APM、日志和机器学习节点的混合架构。其创新包括本地化AI助手(基于Qwen模型)用于自然语言查询,以及数据掩码等安全措施。通过Elastic的机器学习功能,银行能主动检测交易异常,并与SolarWinds等系统集成形成端到端监控。与合作伙伴Gantek的战略协作保障了架构灵活性,支持银行业务
2025-08-30 10:29:58
1124
原创 Elasticsearch logsdb 索引模式和 TSDS 的业务影响
Elasticsearch 8.19和9.1版本在存储引擎方面取得重大突破,通过logsdb索引模式和时间序列数据流(TSDS)功能实现了70%以上的存储优化和19%的吞吐量提升。这些改进使企业能存储更多数据而不增加成本,提高系统可观测性,降低平均修复时间(MTTR),并支持AI分析。Enterprise版还支持synthetic_source功能,无需存储原始JSON文档。这些优化让企业能以更低成本实现数据统一管理,支持合规需求,并为AI应用提供更丰富的数据基础。
2025-08-30 10:12:44
835
原创 使用 ES|QL COMPLETION + 一个 LLM 在 5 分钟内编写一个 Chuck Norris 事实生成器
摘要:Elasticsearch的新功能ES|QL COMPLETION命令结合LLM(如GPT-4o),只需几行代码就能将数据转化为创意输出。文章演示了如何构建Chuck Norris事实生成器:先设置LLM推理端点,然后用ES|QL查询检索电影数据、构建提示词并调用LLM生成内容。这一功能展示了Elasticsearch在检索增强生成(RAG)方面的强大能力,可用于摘要、内容生成等多种场景。目前该功能处于技术预览阶段,开发者可自由尝试不同应用。
2025-08-29 09:46:24
957
原创 将 agents 连接到 Elasticsearch 使用模型上下文协议 - docker
本文介绍了如何安装和配置Elasticsearch MCP Server,实现通过自然语言与Elasticsearch交互。主要内容包括:安装Elasticsearch和Kibana 9.1.2版本;获取API key;安装Claude Desktop客户端;通过Docker部署MCP服务器,支持stdio协议和环境变量配置;设置Claude Desktop连接MCP服务器;最后展示了使用自然语言查询航班索引数据的示例,验证了MCP服务器的功能。该方案简化了Elasticsearch查询,无需编写复杂的DS
2025-08-28 15:48:39
1401
原创 探索 Vertex AI 与 Elasticsearch
本文介绍了如何将Vertex AI与Elasticsearch集成来创建RAG应用。主要内容包括:1)配置Gemini模型并在Kibana Playground中使用;2)创建GCP服务账号并设置权限;3)部署Elasticsearch集群;4)创建AI Connector连接Vertex AI;5)上传测试数据并生成嵌入向量;6)在Playground中测试RAG功能,实现基于索引数据的问答。文章重点展示了使用gemini-2.5-flash-lite模型的完整流程,说明了Elasticsearch 9.
2025-08-28 08:59:55
1287
2
原创 Elasticsearch:默认更轻量 - 从 source 中排除向量
Elasticsearch最新版本(v9.2)及Serverless环境默认不再将向量字段(dense/sparse/rank_vector)存储在_source中。这一优化可减少约50%存储空间、提升索引性能,同时保持所有功能完整性。系统会在需要时自动"回填"向量数据(如更新/恢复时),用户也可通过fields参数或_source选项显式获取向量值。基准测试显示该改进显著降低I/O和资源消耗,特别适合高吞吐量场景。对于需要保留原始精度的特殊情况,仍可通过配置禁用该优化。现有索引不受影响
2025-08-27 07:25:00
882
原创 使用 LLMs 快速构建 Elastic connector:一个 Crawl4AI 教程
本文介绍了如何利用LLM和AI工具快速构建自定义Elastic连接器。作者以Crawl4AI爬虫为例,展示了通过结构化提示让AI生成符合Elastic Connector框架的代码的全过程。文章详细说明了prompt的关键要素:明确上下文、功能需求和技术细节,并演示了如何配置连接器、测试运行以及增强语义搜索能力。这种方法将原本需要数天的开发工作缩短至几分钟,让开发者能更专注于业务价值而非底层实现。最终产出的连接器可自动同步网页内容到Elasticsearch,并支持语义搜索功能。
2025-08-26 09:58:15
770
原创 推进数据成熟度旅程的 3 个步骤
《三步推进数据成熟度之旅》摘要:企业数据作为可再生资源,其价值随成熟度提升而增长。文章提出三阶段发展路径:1)初级阶段通过收集基本数据生成回顾性报告;2)中级阶段实现全数据捕获与分析,应用机器学习自动化任务;3)高级阶段整合跨部门数据,构建统一解决方案以打破信息孤岛。强调数据成熟度是持续过程,需不断优化以提升运营韧性、安全性和客户体验。文中提及Elastic相关技术方案,同时声明第三方AI工具的使用风险。(149字)
2025-08-24 17:58:35
776
原创 你在四阶段数据成熟度旅程中处于哪个阶段?
数据是企业最有价值的可再生资产,能够通过多次使用创造新价值。文章提出数据成熟度的4个等级框架:1)获取采集数据;2)分析获取可操作洞察;3)探索自动化流程;4)协作转型,利用AI创造新业务机会。研究表明,实时提取数据价值的组织实现收入增长的概率是其他组织的8倍。企业应结合搜索和AI技术处理复杂数据,推动数字化转型。无论处于哪个阶段,投资工具和培养数据驱动文化对加速成熟度至关重要。(149字)
2025-08-24 17:49:10
992
原创 用数据驱动的洞察释放业务增长:来自 IT 领导者的 5 个经验
摘要:IT领导者正通过AI和数据驱动洞察保持竞争优势。文章提出五大经验:1)优先数据洞察以推动创新;2)确保数据质量满意度;3)评估数据成熟度;4)在良好数据基础上应用GenAI;5)拥抱GenAI获取竞争优势。研究表明,80%高管预期AI将提升生产力,但需先建立稳健数据基础。93%企业已投资GenAI,但成功关键在于数据质量与战略对齐。组织需减少数据孤岛,实现实时分析,才能充分发挥AI潜力。(149字)
2025-08-24 17:33:48
856
原创 生成式 AI 字段现在在 ECS 中可用,实现与 OTel 的一致性和兼容性
摘要:Elastic推出Elastic Common Schema(ECS)9.1.0测试版,新增生成式AI(GenAI)监控字段,与OpenTelemetry(OTel)标准保持兼容。该功能帮助用户统一不同AI供应商的日志数据,支持监控AI模型请求、响应上下文及安全审计等场景。ECS与OTel的双向整合既保留了现有工作流,又提供了标准化的AI应用监控方案。目前GenAI字段处于测试阶段,未来可能调整。该方案适用于各类AI应用的观测性保障和安全防护需求。
2025-08-24 16:49:07
834
原创 传统 AI 与生成式 AI:IT 领导者指南
传统AI与生成式AI的核心差异及应用 摘要:人工智能领域主要分为传统AI和生成式AI两大类。传统AI基于规则运行,擅长分析数据和自动化任务,应用于欺诈检测、预测分析等领域。生成式AI则能创造新内容,如文本、图像、代码等,正在改变内容创作、客户服务等行业。两者在能力、应用和实施要求上存在显著差异:传统AI依赖结构化数据和预设规则,生成式AI需要海量数据和强大算力。随着AI技术快速发展,企业需根据业务需求选择合适方案,同时应对伦理、安全等挑战。Elastic等公司正通过AI解决方案推动行业创新。
2025-08-23 14:27:02
1052
原创 Elasticsearch:什么是神经网络?
神经网络是机器学习的重要子集,通过模拟人脑结构由互连节点组成多层网络,能够学习和适应复杂数据模式。其核心工作原理包括前向传播和反向传播,通过调整权重优化预测准确性。主要类型包括前馈网络、卷积网络、循环网络等,分别适用于不同任务。神经网络优势在于处理复杂数据、并行计算和模式识别能力,广泛应用于图像识别、自然语言处理、医疗诊断等领域。尽管存在训练资源需求高、可解释性差等挑战,神经网络仍是推动AI发展的关键技术,Elastic等平台已将其整合到搜索和数据分析解决方案中。
2025-08-23 09:20:07
1027
1
原创 什么是 AI(人工智能)?
AI 是一个总称,指为执行通常需要人类智能的任务(如理解语言或识别模式)而构建的工具和系统。AI 赋予机器理解、交流、学习、解决问题和创造的能力。AI 是多个学科的产物,包括计算机科学、数据科学、语言学、神经科学、哲学(尤其是逻辑学研究)和心理学。
2025-08-23 08:29:21
1312
原创 使用 Ragas 评估你的 Elasticsearch LLM 应用
摘要:本文介绍了如何使用Ragas评估框架结合Elasticsearch来评估检索增强生成(RAG)解决方案的质量。通过Goodreads书籍数据集示例,展示了如何创建Elasticsearch索引、执行向量搜索、生成答案和基准答案,并利用Ragas的三个核心指标(context_precision、faithfulness和context_recall)进行评估。文章详细说明了环境设置、数据处理流程和评估方法,并分析了结果输出,指出评估框架的局限性及改进方向。最后强调Ragas等评估工具可作为判断LLM应
2025-08-22 08:56:48
1059
原创 加速你的故障排查:使用 Elasticsearch 构建家电手册的 RAG 应用
本文介绍了如何利用Elasticsearch构建检索增强生成(RAG)应用来解决家电问题。通过上传嵌入式模型、创建语义文本索引、设置LLM推理端点等步骤,实现了一个能解析PDF手册、存储文本向量并智能回答用户问题的系统。该应用将用户查询转换为向量进行语义搜索,结合检索到的上下文生成准确回答。文章详细说明了PDF处理、嵌入生成、语义查询等关键技术实现,展示了Elasticsearch在语义搜索和生成式AI应用中的强大功能。
2025-08-21 13:57:12
1126
原创 使用 FastAPI 的 WebSockets 和 Elasticsearch 来构建实时应用
在本文中,我们学习了如何使用 Elasticsearch 和 FastAPI 基于搜索创建实时通知。我们选择了一个固定的产品列表来发送通知,但你可以探索更多自定义流程,让用户选择自己想要接收通知的产品或查询,甚至使用 Elasticsearch 的 percolate 查询根据产品规格配置通知。我们还尝试了一个接收通知的单用户池。使用 WebSockets,你可以选择向所有用户广播,或者选择特定用户。一个常见的模式是定义用户可以订阅的 “消息组”,就像群聊一样。
2025-08-20 15:41:57
1359
原创 Security:Agentic 框架总结
摘要:Elastic Security Labs探讨了如何通过Agentic框架构建高效AI增强安全系统。该框架使AI代理能动态分析警报、收集上下文并优化检测规则,显著提升警报分级效率。文章指出需解决代理设计、系统集成、质量保证等工程挑战,强调AI应作为安全分析师的辅助工具而非替代品。通过自动化常规任务,人类专家可专注于复杂决策。完整技术细节详见白皮书《Agentic框架:构建AI增强安全系统的实践考量》。(149字)
2025-08-18 11:18:52
379
原创 Elastic 的托管 OTLP 端点:为 SRE 提供更简单、可扩展的 OpenTelemetry
Elastic宣布推出托管OTLP端点,简化OpenTelemetry数据摄取流程。该功能支持原生OTLP数据存储,自动扩展处理突发流量,并提供统一的日志、指标和追踪处理。开发者可通过SDK或Collector直接发送数据,无需管理基础设施。该服务现已在ElasticCloud Serverless上线,帮助用户简化可观测性管道并提升故障修复效率。
2025-08-18 10:55:41
935
原创 Elasticsearch:使用 Gradio 来创建一个简单的 RAG 应用界面
Gradio 是一个快速构建机器学习模型网页界面的工具。本文展示了如何使用 Gradio 为基于 Elasticsearch 和 DeepSeekR1 的 RAG 问答系统创建交互式界面。代码示例演示了如何设置 Elasticsearch 连接、处理语义搜索查询,并通过 OpenAI 接口生成回答。通过简单的 Gradio 界面,用户可以输入关于《爱丽丝梦游仙境》的问题,系统会从书中检索相关段落并生成回答。运行脚本后,可在本地浏览器访问问答界面,支持中英文提问。
2025-08-15 16:57:11
562
原创 Elasticsearch 分片和副本:实用指南
作者:来自 Elastic掌握 Elasticsearch 分片和副本的概念并学习如何优化它们。节点、集群和分片 - Elasticsearch 101 课程想获得 Elastic 认证吗?了解下一次的时间!Elasticsearch 拥有大量新功能,可帮助你为自己的用例构建最佳搜索解决方案。深入查看我们的以了解更多信息,开始,或立即在上尝试 Elastic。Elasticsearch 通过在 Lucene 之上构建分布式系统来增强 Lucene 的功能,从而解决可扩展性和容错问题。
2025-08-15 09:00:23
1140
原创 Elasticsearch:如何使用 Qwen3 来做向量搜索
本文介绍了如何使用Qwen3嵌入模型结合Elasticsearch实现语义搜索。首先需要安装Elasticsearch和Kibana,然后通过Python脚本将文本数据(如阿里巴巴和百度的介绍)使用Qwen3模型向量化后存入Elasticsearch。索引包含4096维的向量字段,采用余弦相似度进行搜索。通过示例展示了如何查询"阿里巴巴法定代表人"、"中国搜索引擎公司"等关键词,系统能准确返回相关度最高的文本内容。该方法利用大语言模型的语义理解能力,实现了基于内容的智
2025-08-14 19:58:36
585
1
原创 失败存储:查看未成功的内容
Elastic推出全新"失败存储"功能,可捕获并索引处理失败的日志数据,解决数据丢失难追踪的问题。该功能通过将失败文档存入专用索引,提供数据摄取问题的可见性,支持调试模式变化和监控数据质量。用户可为单个或批量数据流启用该功能,并通过ES|QL和Kibana工具分析失败原因。失败数据默认保留30天,支持数据生命周期管理。该功能从Elastic 9.1和8.19版本开始提供,将逐步在日志索引上默认启用。
2025-08-14 09:28:48
1257
原创 Elastic 获得 2025 年 Google Cloud DORA “以 AI 构建未来架构” 奖
Elastic荣获2025年Google Cloud DORA"以AI构建未来架构"奖,表彰其运用DORA原则在软件交付和运营性能上的显著提升。通过整合Google Cloud的AI工具,Elastic在部署频率、变更交付周期、变更失败率和平均恢复时间等关键指标上取得突破,同时实现20%运营成本降低和25%碳足迹减少。作为首家直接集成到Vertex AI的ISV,Elastic将AI深度融入产品开发与内部运营,推动生成式AI在搜索、安全和可观测性领域的创新应用。这一合作成果展示了云原生技
2025-08-14 09:06:30
869
原创 如何使用 Ollama 在本地设置并运行 Qwen3
本文介绍了如何在本地使用Ollama安装和运行Qwen3大语言模型,并构建基于Gradio的交互式应用。Qwen3是阿里巴巴开源的先进模型,支持100多种语言,在推理、编码和翻译任务中表现优异。教程详细讲解了通过Ollama命令行安装Qwen3、不同参数规模的模型选择、以及三种使用方式:终端交互、API调用和Python集成。重点展示了如何用Gradio创建具有两种功能的Web应用:可切换思维模式的推理界面和多语言翻译工具。本地运行Qwen3具有隐私保护、低延迟、成本低等优势,适合开发智能应用原型。
2025-08-13 21:31:48
1886
02-阿里云Elasticsearch向量引擎百亿级数据优化实践 魏子珺 杭州 20250419
2025-04-19
00-Elastic Pioneer-项目
2025-04-19
Elasticsearch 8.17 Logsdb:企业降本增效利器 程地华 线上 20250416
2025-04-17
04 - 腾讯云 ES AI 搜索优化实践 - 刘忠奇 武汉 20250329
2025-03-31
02 - ES 在绿盟企业安全平台的应用实践 - 陆攀 武汉 20250329
2025-03-31
01 - AI 驱动 - 搜索的未来 -刘晓国 武汉 20250329
2025-03-31
05 -Elasticsearch 存算分离架构在小米的应用实践 - 周明裕 郑钧元 武汉 20250329
2025-03-31
03 - Agentic RAG 构建之路 - 李捷 武汉 20250329
2025-03-31
02-GraphRAG 和 Elasticseach 8 的创新实践 - 徐胜 上海 20250222
2025-03-03
01-AI 驱动 - 搜索的未来 - 刘晓国 上海 20250222
2025-03-03
04-Elasticsearch 在 AI 驱动下的检索新特性 - 槐新 上海 20250222
2025-03-03
03-基于 ES 与 LLM 技术构建 B站大数据运维智能体实践 - 张勋祥 上海 20250222
2025-03-03
03-Elasticsearch 在 AI 检索与 Serverless 模式成本优化的新特性 王亚宁 北京 20241214
2024-12-17
01-AI 驱动 - 搜索的未来 刘晓国 北京 20241214
2024-12-16
04 - 降本增效的利器,认识一个不同的 Elastic 顾鹏飞 北京 20241214
2024-12-16
02-Kibana 构建高级可视化 包春喜 北京 20241214
2024-12-16
02-Elasticsearch 8.x 向量搜索使用详解 杭州 1.6 2024
2024-12-10
高管指南:如何将生成式AI融入运营
2024-12-05
Elastic帮助企业发挥数据的作用
2024-12-05
Elastic最新产品及解决方案
2024-12-05
01-ES AI Assistant集成 DeepSeek-Qwen3,搭建智能运维助手 - 槐新 线上 20250903
2025-09-03
01-ElasticsearchCCR详解 线上 刘琪 20250820
2025-08-21
01-基于Elastic地理位置检索-搜索附近 j九川 线上 20250806
2025-08-07
02-腾讯云 ES 百亿级 AI Search 优化实践 陈曦 深圳 20250727
2025-07-30
03-Elastic - Agentic RAG 构建之路 李捷 深圳 20250727
2025-07-30
04-Elasticsearch 在日志系统的应用 石樊 深圳 20250727
2025-07-30
Elasticsearch 可搜索快照 - 降本增效的实践与探索 线上 夏乔 20250717
2025-07-18
【大数据知识库】基于Qwen2.5-14B与Elasticsearch的智能问答系统设计:传统检索与向量检索对比及RAG架构应用
2025-07-10
【AIOps领域】基于M02-双 MCP 赋能ES Luke 南京 20250628CP框架的Elasticsearch与Kibana智能根因分析系统设计:提升企业数据洞察效率和自动化运维能力
2025-06-28
03-Elasticsearch 数据流转之道 - 从写入到查询的技术探秘 尚雷.南京 20250628
2025-06-28
04-ES日志集群大规模迁移实践-李猛-南京-20250618
2025-06-28
腾讯云 ES AI 搜索优化实践 刘忠奇 线上 20250605
2025-06-05
ES/Ksibana 双MCP框架下的新一代AiOps实践 Luke 线上 20250521
2025-05-22
03-Elasticsearch跨境电商搜索优化实践 欧阳楚才 杭州 20250419
2025-04-19
05-ES AI Assistant集成 DeepSeek QwQ,搭建智能运维助手 槐新 杭州 20250419与应用场景演示
2025-04-19
04-Higress x Elasticsearch构建更智能的AI网关 程治玮 20250419
2025-04-19
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人