日志文件定义
日志文件是由设备、网络、应用程序和操作系统生成的数据文件(通常是基于文本的),包含关于它们活动、操作和使用模式的记录信息。它们作为环境内发生的所有事情的主要历史记录,提供关于事件、流程、安全、性能指标和用户活动的重要数据。
日志文件通常包括描述性的上下文数据,如时间戳,记录系统中具体发生了什么以及发生的时间。日志数据易于访问且无处不在,对于排查系统问题、解决安全事件和洞察用户行为至关重要。根据软件或操作系统的不同,日志文件可以以结构化、半结构化或非结构化格式出现。

那么,什么是日志管理?
日志管理是持续收集、存储和处理日志数据以便后续分析的过程。有效的日志管理是从日志数据中获得可操作见解的第一步,可以优化故障排查并提升系统性能,从而实现更深入的取证分析和更高效的资源管理。
集中式日志管理依赖于将操作系统和其他来源的数据汇聚到单一统一平台的工具。日志管理使组织能够整理和存储日志数据。随后,IT、DevOps 和 SecOps 团队可以利用日志监控来跟踪活动,同时通过日志分析主动发现潜在威胁。
实际上,日志管理提供了一个可排序和可搜索的集中访问日志数据的框架。结合指标、追踪和分析,日志管理是可观测性和安全团队的重要信号基础。
日志文件类型
几乎每一个数字事件都会生成日志文件。根据日志来源的不同,常见的日志类型包括事件日志、应用日志、服务器日志、授权日志、访问日志、变更日志、可用性日志、资源日志、威胁日志、审计日志和性能日志,仅列举部分。
日志文件在 IT 基础设施的每个层面生成,涵盖网络、Web 服务与服务器、操作系统和应用程序、数据库与防火墙,以及容器和终端设备。系统或网络的几乎每个组件都会生成不同类型的数据,并将这些信息记录在日志中。通常,日志有不同级别,针对特定的故障排查场景,可以生成更详细、更丰富的数据日志。
以下是一些最常见的日志文件类型:
-
系统日志
系统日志(syslogs)记录操作系统内部的事件,包括系统变更、启动信息、意外关闭、错误和警告。Windows、MacOS、Linux 等几乎所有操作系统都会生成系统日志。 -
Web 服务器日志
Web 服务器日志记录流量模式和错误,帮助诊断索引或访问问题,对搜索引擎优化(search engine optimization - SEO)很有用,例如统计页面访问频率、新页面索引速度和优化效果反映时间。 -
应用日志
应用日志记录软件应用运行时的事件、错误和操作,开发者、运维和安全分析师通过它监控应用健康、排查问题和追踪用户行为,内容包含错误信息、堆栈跟踪、性能指标和用户操作等。 -
安全日志
安全日志跟踪记录安全相关事件,如登录成功或失败、密码和访问控制变更、文件删除和入侵检测警报。通常可按事件类型配置,方便管理员定义并标记需关注的安全事件。 -
网络日志
网络日志记录网络或设备上的事件数据,包括网络流量、应用事件和用户活动。监控网络日志有助于提前发现网络和设备问题,并掌握整体网络健康和性能状况。 -
错误日志
错误日志记录错误、警告、未处理的错误信息和自定义错误信息。软件、系统和应用均有错误日志,通常包含错误严重级别和相关上下文,方便调试和诊断。
查找日志文件
日志文件的位置取决于生成它们的操作系统、应用程序、服务器或服务。
-
Linux
大多数日志文件位于/var/log
目录下。 -
Windows
可以通过“事件查看器”(Event Viewer)应用访问日志。 -
MacOS
使用 “控制台/Console”(Console)应用查看日志。 -
应用程序
许多应用允许在设置中指定日志文件位置。 -
建议
查阅具体应用的文档以了解日志文件路径。
使用命令行工具如grep
在日志文件中搜索内容。
使用专门的日志管理工具,实现多应用日志的集中管理和分析。
处理日志文件
阅读、分析和解读日志
大多数 .log
文件类似于 .txt
文件,任何人都可以打开并阅读。但当日志数据达到 TB 级别时,手动处理几乎不现实。通常使用关联分析、模式识别和系统性能分析等技术,从日志中检测异常并定位根因。
在实际操作中,SRE、IT 团队、DevOps 工程师和 IT 架构师依赖日志分析工具,快速解决应用和系统问题,提前预防未来风险。可视化工具和报表仪表盘也能帮助非技术人员更容易发现趋势和异常。
日志管理和存储
面对海量、多样化的日志数据,集中式日志管理和存储是有效日志分析策略的基础。
把日志数据从所有来源集中收集,便于统一管理和分析。由于日志数据来自分布式、多样化系统,且格式不一,日志分类和标准化是提升分析效率的关键。
日志数据还需随时可访问。个人可用 grep
命令做简单文本搜索,如按时间或 IP 过滤日志,但企业通常需要安全、高可用且具备扩展性的经济型存储方案。
存储方案可以是本地、云端、分布式或混合,索引和压缩技术质量直接影响访问速度和成本。安全的日志保留也是合规的关键。
常见日志格式
在最一般的层面上,日志文件有结构化、半结构化或非结构化格式。日志的具体格式决定了如何解析该日志文件的内容。日志格式还可以定义日志文件中包含的字段和数据类型。随着当今基础设施日益复杂,日志格式差异很大,但一些常用的日志格式包括:
-
Windows 事件日志:包含安全、系统、应用等事件,管理员用来排查故障和安全事件。
-
JSON 日志:半结构化,支持多层嵌套和多数据类型,方便灵活。
-
CEF(Common Event Format):安全设备和应用的标准格式,便于日志聚合和SIEM集成。
-
CLF(NCSA Common Log Format):Web服务器使用的老牌标准格式,字段固定不可定制。
-
W3C 扩展日志格式:Windows IIS服务器格式,可定制字段,减少日志体积。
-
ELF(Extended Log Format):Web应用日志格式,包含单个 HTTP 事务更多信息和更大灵活性。
Syslog 是 Unix 和 Linux 系统的标准日志格式。这种格式被广泛支持,可以跨网络集中收集。它遵循一种结构化格式,包含 facility 代码、severity 级别和时间戳。Syslog 可用于系统日志记录、安全审计以及系统组件之间的一般消息传递。
OpenTelemetry(简称 OTel)致力于标准化日志文件和日志格式,以实现日志与 trace 之间更丰富的关联。这将使日志在分布式和异构系统中更有价值,从而提高可观测性。
通过支持现有的传统日志库、日志收集和处理解决方案,OpenTelemetry 的日志数据模型试图就日志应包含的内容达成共识,包括日志系统需要记录和解释哪些数据。所有新设计的日志系统都应按照 OpenTelemetry 的日志数据模型生成日志。
常见的日志使用场景
从实时应用和性能监控到合规性、用户行为、根本原因分析以及 SIEM,Elastic 日志分析使组织能够最大程度地利用日志数据,满足多种使用需求。
无论你是将日志分析用于可观测性还是安全性,机器学习功能都可以帮助你从可观测环境中去除噪音。LLMs 和 AI 助手提供丰富的诊断和领域经验,帮助团队更好地发展。日志分析还可以帮助你获得对第三方服务和应用的可见性,并结合日志和 SLOs,更主动地进行应用管理。
企业日志管理
每天需要摄取大量数据,企业日志管理平台帮助组织管理和处理在各个系统中产生的大量日志数据。有效的日志管理对于维护 IT 系统的健康、安全和性能至关重要,同时也有助于确保合规性、诊断和调试问题、减少瓶颈并优化资源。
复杂、动态、分布式的云系统和大规模的云应用通常难以观测。全面的企业日志管理能提高日志的可用性和可搜索性,从而使 DevOps、SecOps 和 IT 团队更高效地开展工作。
使用 Elastic 进行日志分析
Elastic Observability 是最广泛部署的日志分析和管理工具之一,这不是没有原因的。作为日志监控领域的领导者,Elastic 为混合云提供可扩展、集中式的日志监控。它基于 Elasticsearch 构建,提供强大且灵活的日志管理与搜索功能。无论是在本地部署还是在 Elastic Cloud 上,Elastic 都可以轻松扩展以处理你组织的 PB 级日志数据,用于故障排查、洞察、可观测性或安全任务。
对于企业日志管理解决方案,LogsDB 索引模式可将日志数据的存储占用减少最多 65%,让团队在不超出预算的前提下扩大可见性。