Elastic CEO 表示向量数据库 “从来不是一门生意”,正值 Pinecone 出售谈判期间

Elastic 本季度的财报本应成为头条。这家总部位于旧金山的公司超出了华尔街的预测,收入增长 20% 至 4.15 亿美元,主要得益于其云业务 24% 的增长。调整后的收益同比增长 71% 至每股 0.60 美元,远高于分析师预期。公司还将 2026 财年的销售额指引上调至 16.84 亿美元。从数据来看,Elastic 执行得非常出色。

但引起关注的却是公司 CEO Ashutosh Kulkarni,他直言不讳地驳斥了将 Elastic 描绘为脆弱的竞争对手和叙事。被问到 Elastic 是否会在一家更大的科技公司内部发展得更好时,Kulkarni 的回答毫不含糊:“那些人根本不知道自己在说什么。”

最尖锐的时刻出现在谈到 Pinecone 时。这家由风险投资支持的公司是 AI 生态的一部分。Pinecone 首创了托管向量数据库的理念,并将自己定位为 RAG(检索增强生成)的核心构建模块。公司在 B 轮融资中筹集了 1 亿美元,估值 7.5 亿美元,并与 LangChain、Anyscale 和 Mistral 建立了集成,声称拥有超过 20,000 家组织客户。如今,据报道它正在寻求出售。

Kulkarni 的结论是 Pinecone 从一开始就不是一个独立的生意。“我们一直说向量数据库只是一个功能。它们永远不会成为独立的生意。”他说。

从 Elasticsearch 到 Search AI

Elastic 是一家 “搜索 AI 公司”,这是 Kulkarni 一直用越来越强烈的语言强调的定位。公司基于十多年前发布的开源项目 Elasticsearch 起家,因帮助开发者搜索和分析非结构化数据而闻名。与结构化的关系型数据不同,非结构化信息如文本、日志和图片无法整齐地放入行和列中。Elastic 构建了工具来让它们可用。

“我们一直专注的就是非结构化数据、杂乱数据——这一直是最难分析和从中提取价值的东西之一,”Kulkarni 说。在他看来,Google 之于互联网,Elastic 之于企业数据:把噪音变成可搜索的东西。

随着大语言模型的出现,这一角色得到了扩展。生成式 AI 依赖于可靠、相关数据来支撑输出。Kulkarni 提到 Elastic 的向量数据库、嵌入模型、重排序方法和分块策略,都是检索和上下文层的一部分。“从根本上说,你需要检索,你需要某种数据检索来让这些 LLM 在正确的上下文中发挥作用。”他说。

Snowflake、Databricks 和错误的数据类型

在同一次采访中,Kulkarni 有意将 Elastic 与行业巨头做对比。Snowflake 和 Databricks 都公开进军 AI 搜索。Kulkarni 称赞他们在结构化数据和 BI 工作负载方面的优势,但坚持 Elastic 的重点不同。

“如果你有你了解的数据 —— 你有一个很好的 schema,你明白这个 schema 是什么样的,那就有很多优秀的技术可以存放它,”他说,并举例 Snowflake 和 Databricks。“当你处理非结构化信息时,你需要像 Elasticsearch 这种基于搜索索引的平台。”

Elastic 并不是在争夺 OLTP 或 BI 工作负载。Kulkarni 称其专注点是“上下文工程”。

Pinecone 的赌注与 Elastic 的对策

Pinecone 走了一条不同的道路。自 2019 年成立以来,它一直将向量数据库作为一个独立类别来推广。它的托管平台让开发者可以存储带有文本、音频或图片嵌入的高维向量,并进行相似性查询。在生成式 AI 热潮中,这成为 RAG 工作流中的常见组件。

公司迅速扩张。它的合作伙伴计划包括 LangChain 和 Mistral。内部人员数量增长了三倍,并采用 Notion 作为工作区。销售团队在转型后报告每周触点从 50 增加到 400。到 2023 年,Pinecone 已成为 AI 基础设施领域的知名名字之一。

如今有报道称该公司正在探索出售,这凸显了该模式的局限性。Kulkarni 一直坚持认为仅靠向量无法提供企业所需的准确性或上下文。“如果你只是把所有数据塞进去,把它们向量化,然后把向量搜索当成唯一的技术,你注定会失败。” 他说。Elastic 的方法是混合搜索:结合关键词索引、向量和重排序来提供更相关的结果。

当 Elastic 在强劲增长的基础上上调指引时,Pinecone 尽管有知名度和采用度,却在考虑战略选择。

开源作为战略

Elastic 的方法与其开源基础密切相关。Elasticsearch 起源于社区项目,公司一直保持核心代码公开可用。“我是开源的超级粉丝。我认为它带来了一种民主化效应,这对行业来说极其有利。” Kulkarni 说。

Elastic 支持像 Llama 和 Mistral 这样的开放权重模型,也支持来自超大云厂商的闭源模型,并允许在公有云和私有数据中心部署。“如果你提供选择,这就会成为一个重要的差异化因素。” Kulkarni 说。

他将这种选择与客户信任联系起来:“我们通过每月、每年持续提供增量价值来赢得你的信任,而不是通过专有格式制造锁定。” Kulkarni 指出,印度市场的多语言、多模态和隐私敏感的用例让这种灵活性尤为重要。

如今,Elastic 和 Pinecone 代表了对 AI 基础设施的不同结论。Elastic 强调混合方法和开源选择。Pinecone 则把业务建立在向量之上。一个在强劲季度增长后上调了预期,另一个尽管被广泛采用却据称在考虑出售。Kulkarni 选择直言不讳:“向量数据库只是一个功能。它们永远不会成为独立的生意。”

更多阅读:Elasticsearch:向量数据库基础设施类别的兴衰

译自:https://aimmediahouse.com/market-industry/elastic-ceo-says-vector-databases-were-never-a-business-amid-pinecone-sale-talks

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值