怎么用deepseek 编写程序代码开发软件?

怎么用deepseek 编写程序代码开发软件?

怎么可以让deepseek按照要求编写代码显示全部 ​

自从cursor加入了deepseek-r1之后,很多人发现写程序的效率反而下降了,
因为很多人是这样写的,直接在cursor框中,输入需求,就想生成应用。


结果自然不会太理想,其实原因很简单——你漏掉了关键的中间步骤!


我们都知道deepseek是分析型大模型,又不是指令性大模型。
举例说明
下面以“牛马小程序”,可以动态看到你的实时工资为例,我们讲一下如何三步5分钟搞定这个小程序。
第一步:提出构想,快捷键“cmd+L”,打开chat功能,模型选择deepseek-r1。


第二步:按照deepseek的反馈,输入确定的内容,让deepseek-r1重新生成新的需求文档。


这个时候,deepeek就会让我们输入反馈的内容,就这样经过多轮的对话,最终生成一篇清晰的需求文档。


第三步:让cursor按照需求文档生成代码,输入“cmd+i”,进入composer

### 使用 DeepSeek 进行期货交易编程 DeepSeek 是一种先进的代码生成工具,在多种编程场景下表现出色[^1]。然而,针对特定领域如金融市场的应用,尤其是编写期货交易程序,需要结合金融市场特有的逻辑和数据处理方法。 #### 1. 安装与配置环境 为了利用 DeepSeek 开发期货交易平台,首先要设置好开发环境: ```bash pip install deepseek finance-datareader pandas numpy matplotlib scikit-learn ``` 这些库提供了必要的功能来获取市场数据、执行数据分析以及构建机器学习模型。 #### 2. 获取历史行情数据 通过 `finance-datareader` 可以轻松访问公开的历史价格信息: ```python import FinanceDataReader as fdr def get_historical_data(ticker, start_date='2023-01-01', end_date=None): df = fdr.DataReader(ticker, start=start_date, end=end_date) return df[['Close']] ``` 此函数返回指定时间段内的收盘价序列。 #### 3. 构建预测模型 基于收集到的数据训练一个简单的线性回归模型作为示例: ```python from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split def build_prediction_model(dataframe): X = dataframe.index.values.reshape(-1, 1) # 时间戳作为特征 y = dataframe['Close'].values # 收盘价为目标变量 X_train, X_test, y_train, y_test = train_test_split(X, y) model = LinearRegression() model.fit(X_train, y_train) predictions = model.predict(X_test) return { 'model': model, 'predictions': predictions, 'test_dates': X_test.flatten(), 'actual_prices': y_test } ``` 这段代码实现了基本的时间序列预测框架。 #### 4. 实现自动化下单策略 当预测结果显示未来价格上涨时买入合约;反之则卖出。这里仅提供概念性的实现方式: ```python class TradingBot: def __init__(self, initial_balance=10000): self.balance = initial_balance self.positions = [] def place_order(self, action, price, quantity=1): if action == "BUY": cost = price * quantity if self.balance >= cost: self.balance -= cost self.positions.append({'price': price, 'quantity': quantity}) elif action == "SELL": for position in reversed(self.positions): profit = (position['price'] - price) * position['quantity'] self.balance += max(0, profit) break def run_strategy(self, forecast_results): latest_price = forecast_results['actual_prices'][-1] predicted_next_day_close = forecast_results['predictions'][-1] if predicted_next_day_close > latest_price: self.place_order('BUY', latest_price) else: self.place_order('SELL', latest_price) ``` 请注意这只是一个非常基础的例子,并未考虑实际交易所涉及的风险管理和复杂因素。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值