学习tensorflow使用神经网络实现MNIST手写数字分类的过程中遇到了很多问题,这里记录下来并总结
环境:
- windows11下的VM15,Ubuntu20.04,tensor环境,需要的包统一用conda install进行安装
- IDE为pycharm2021,实际自己练习时使用jupyter效果可能会更好
导包:
from tensorflow import keras
第一步没什么好说的,tensorflow是一个和pytorch齐名的框架,keras是作为tensorflow的核心接口
感兴趣可以使用单击tensorflow或者pytorch,再使用Ctrl+鼠标左键进行查看
获得数据集:
# 数据集 mnist
from tensorflow.keras.datasets import mnist
# 获取数据
(X_train, y_train),(X_test,y_test) = mnist.load_data()
这样我们得到了训练集、测试集和标记,但是mnist具体是什么样子的我们不清楚
先看一下数据类型,再看shape
print(type(X_train))
print(X_train.shape)
<class 'numpy.ndarray'>
(60000, 28, 28)
这里可以下载mnist数据
http://yann.lecun.com/exdb/mnist/
四个文件都是ubyte文件,无法用软件打开,需要代码进行读取
# 将训练集数据形状从(60000,28,28)修改为(60000,784)
X_train = X_train.reshape(len(X_train),-1)
X_test = X_test.reshape(len(X_test),-1)
print(X_test.shape)
查看一些图片:
先编写一个将数据转化为图片的函数
import matplotlib.pyplot as plt
# 查看一些图片
def plot_images(imgs):
"""绘制几个样本图片
:param show: 是否显示绘图
:return:
"""
sample_num = min(9, len(imgs))
img_figure = plt.figure(1)
img_figure.set_figwidth(5)
img_figure.set_figheight(5)
for index in range(0, sample_num):
ax = plt.subplot(3, 3, index + 1