神经网络实现MNIST手写数字分类

学习tensorflow使用神经网络实现MNIST手写数字分类的过程中遇到了很多问题,这里记录下来并总结

环境:

  • windows11下的VM15,Ubuntu20.04,tensor环境,需要的包统一用conda install进行安装
  • IDE为pycharm2021,实际自己练习时使用jupyter效果可能会更好
导包:
from tensorflow import keras

第一步没什么好说的,tensorflow是一个和pytorch齐名的框架,keras是作为tensorflow的核心接口

感兴趣可以使用单击tensorflow或者pytorch,再使用Ctrl+鼠标左键进行查看

获得数据集:
# 数据集 mnist
from tensorflow.keras.datasets import mnist
# 获取数据
(X_train, y_train),(X_test,y_test) =  mnist.load_data()

这样我们得到了训练集、测试集和标记,但是mnist具体是什么样子的我们不清楚

先看一下数据类型,再看shape

print(type(X_train))
print(X_train.shape)

<class 'numpy.ndarray'>
(60000, 28, 28)

这里可以下载mnist数据

http://yann.lecun.com/exdb/mnist/

四个文件都是ubyte文件,无法用软件打开,需要代码进行读取

# 将训练集数据形状从(60000,28,28)修改为(60000,784)
X_train = X_train.reshape(len(X_train),-1)
X_test = X_test.reshape(len(X_test),-1)
print(X_test.shape)
查看一些图片:

先编写一个将数据转化为图片的函数

import matplotlib.pyplot as plt
# 查看一些图片
def plot_images(imgs):
    """绘制几个样本图片
    :param show: 是否显示绘图
    :return:
    """
    sample_num = min(9, len(imgs))
    img_figure = plt.figure(1)
    img_figure.set_figwidth(5)
    img_figure.set_figheight(5)
    for index in range(0, sample_num):
        ax = plt.subplot(3, 3, index + 1
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值