第1关:逻辑回归核心思想
#encoding=utf8
import numpy as np
def sigmoid(t):
'''
完成sigmoid函数计算
:param t: 负无穷到正无穷的实数
:return: 转换后的概率值
:可以考虑使用np.exp()函数
'''
#********** Begin **********#
sig = 1/(1+np.exp(-t))
return sig
#********** End **********#
第2关:逻辑回归的损失函数
1、A
2、ACD
3、AB
4、D
第3关:梯度下降
# -*- coding: utf-8 -*-
import numpy as np
import warnings
warnings.filterwarnings("ignore")
def gradient_descent(initial_theta,eta=0.05,n_iters=1000,epslion=1e-8