educoder 机器学习 --- 逻辑回归

这篇博客深入探讨了逻辑回归的核心思想,详细解释了逻辑回归的损失函数,并介绍了使用梯度下降进行优化的方法。通过实际案例,如癌细胞精准识别和手写数字识别,展示了逻辑回归在实际问题中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第1关:逻辑回归核心思想

#encoding=utf8
import numpy as np

def sigmoid(t):
    '''
    完成sigmoid函数计算
    :param t: 负无穷到正无穷的实数
    :return: 转换后的概率值
    :可以考虑使用np.exp()函数
    '''
    #********** Begin **********#
    sig = 1/(1+np.exp(-t))
    return sig
    #********** End **********#

第2关:逻辑回归的损失函数

1、A
2、ACD
3、AB
4、D

第3关:梯度下降

# -*- coding: utf-8 -*-

import numpy as np
import warnings
warnings.filterwarnings("ignore")

def gradient_descent(initial_theta,eta=0.05,n_iters=1000,epslion=1e-8
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值