Flink1.11读取kafka数据

基础内容,但是很多细节经常忘记,比如要导入那些包之类的。索性就记录下来,方便以后查阅。

导包

<dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-streaming-scala_2.11</artifactId>
    <version>1.11.1</version>
</dependency>
<!--缺这个依赖会报错:java.lang.IllegalStateException: No ExecutorFactory found to execute the application.-->
<dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-clients_2.11</artifactId>
    <version>1.11.1</version>
</dependency>

<dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-connector-kafka-0.10_2.11</artifactId>
    <version>1.11.1</version>
</dependency>

代码

package it.aspirin.flinkx.demo

import java.util.Properties

import org.apache.flink.api.common.serialization.SimpleStringSchema
import org.apache.flink.streaming.api.datastream.DataStreamSource
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer010
import org.apache.kafka.clients.consumer.ConsumerConfig
import org.apache.kafka.common.serialization.StringDeserializer

object FlinkDemo {
  def main(args: Array[String]): Unit = {
    val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
    env.setParallelism(4)
    val username = ""
    val password = ""
    val props = new Properties()
    props.setProperty(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092")
    props.setProperty(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest")
    props.setProperty(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, classOf[StringDeserializer].getName)
    props.setProperty(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, classOf[StringDeserializer].getName)
//kerberos需要带这句
    props.setProperty("sasl.jaas.config",
      s"""org.apache.kafka.common.security.plain.PlainLoginModule required username="${username}" password="${password}";""")

    val value: DataStreamSource[String] = env.addSource(new FlinkKafkaConsumer010[String]("metric-topic", new SimpleStringSchema(), props))
    value.print("kafka")
    env.execute()
  }
}

 

 

 

 

Kafka SQL Connector是Apache Kafka社区提供的一个工具,用于将Kafka消息流转换成关系型数据,并支持在SQL中进行查询、聚合和窗口操作。Flink是一个流处理框架,可以实现实时的数据处理和计算。在Flink 1.11版本中,可以使用Kafka SQL Connector将Kafka消息流集成Flink中,并直接在Flink SQL中进行流处理和分析。 使用Kafka SQL Connector需要进行以下步骤: 1. 安装Kafka SQL Connector 需要下载并安装Kafka SQL Connector包,可以从Apache官网或者Kafka社区下载。 2.Kafka SQL Connector添加到Flink Classpath中 可以通过修改flink-conf.yaml文件或使用--classpath参数将Kafka SQL Connector添加到Flink Classpath中。 3. 创建Kafka数据源 可以使用Flink提供的Kafka连接器,从Kafka读取数据流,并转换成Flink DataStream。代码示例: ```java Properties props = new Properties(); props.setProperty("bootstrap.servers", "localhost:9092"); props.setProperty("group.id", "test"); FlinkKafkaConsumer<String> consumer = new FlinkKafkaConsumer<>("my-topic", new SimpleStringSchema(), props); DataStream<String> stream = env.addSource(consumer); ``` 4. 创建Kafka SQL表 使用CREATE TABLE语句,将Kafka数据流转换成Kafka SQL表。代码示例: ```sql CREATE TABLE kafka_table ( `key` STRING, `value` STRING, `timestamp` TIMESTAMP(3) METADATA, WATERMARK FOR `timestamp` AS `timestamp` - INTERVAL &#39;5&#39; SECOND ) WITH ( &#39;connector&#39; = &#39;kafka&#39;, &#39;topic&#39; = &#39;my-topic&#39;, &#39;properties.bootstrap.servers&#39; = &#39;localhost:9092&#39;, &#39;properties.group.id&#39; = &#39;test&#39;, &#39;format&#39; = &#39;json&#39; ) ``` 5.Flink SQL中进行数据处理和分析 可以使用Flink SQL语句,在Kafka SQL表上进行数据处理和分析。代码示例: ```sql SELECT COUNT(*) FROM kafka_table WHERE `key` = &#39;foo&#39; ``` 以上就是使用Kafka SQL Connector在Flink 1.11中将Kafka消息流集成Flink中的基本步骤。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值