手把手教你:Python爬虫花瓣网,美图自动存桌面!
亲爱的朋友们,今天咱们来点干货——用Python做个小爬虫,专门从花瓣网上扒拉美图,一键保存到你的桌面上。这不仅是个技术活,也是个挺有趣的小项目。赶紧来看看怎么做吧!
1. 准备工具
首先,你得有Python环境,然后安装两个库:requests
用于发送网络请求,BeautifulSoup
用于解析HTML文档。如果你还没装,可以在命令行里输入:
pip install requests beautifulsoup4
2. 编写爬虫花瓣网代码
下面这段代码是一个Python脚本,使用Selenium和BeautifulSoup库来爬取花瓣网,用来抓取花瓣网的美图,并保存到桌面。
# coding=utf-8
import time
from bs4 import BeautifulSoup
from selenium import webdriver
from urllib.request import urlretrieve
# 定义一个爬虫类,用于爬取花瓣网上的图片
class crawl_huaban:
def __init__(self, url):
self.url = url # 初始化时传入的URL
# 获取网页HTML内容的方法
def getHtml(self, url):
driver = webdriver.PhantomJS() # 使用PhantomJS驱动
driver.get(url) # 访问URL
driver.implicitly_wait(3) # 隐式等待3秒
resp = BeautifulSoup(driver.page_source, 'html5lib') # 解析页面
driver.quit() # 关闭驱动
return resp # 返回解析后的页面对象
# 获取页面内容的方法
def getPage(self):
driver = webdriver.PhantomJS() # 使用PhantomJS驱动
driver.get(self.url) # 访问初始化时传入的URL
driver.implicitly_wait(3) # 隐式等待3秒
resp = BeautifulSoup(driver.page_source, 'html5lib') # 解析页面
driver.quit() # 关闭驱动
return resp # 返回解析后的页面对象
# 获取图片的方法
def getImage(self):
resp = self.getPage() # 获取页面内容
pins_ids = [] # 存储图片ID的列表
pins = resp.find_all("a", class_="img x layer-view loaded") # 查找所有图片链接
for pin in pins:
pins_ids.append(pin.get('href')) # 提取图片链接并添加到列表
pins_ids = pins_ids[2:] # 去掉前两个链接,可能是广告或无关内容
total = 1 # 初始化计数器
for pinid in pins_ids: # 遍历图片链接
print('第{0}张照片'.format(total)) # 打印当前图片编号
img_url = 'http://huaban.com%s' % pinid # 构造图片页面的URL
img_html = self.getHtml(img_url) # 获取图片页面的HTML
img_hold = img_html.find("div", class_="image-holder") # 查找包含图片的div
img_src = img_hold.find("img").get("src") # 提取图片的src属性
img_src_url = 'http:' + img_src # 构造完整的图片URL
try:
urlretrieve(img_src_url, '%s.jpg' % pinid) # 下载图片
print("获取图片:%s成功!" % img_src_url) # 打印成功信息
except:
print("获取图片:%s失败,跳过,获取下一张!" % img_src_url) # 打印失败信息
total += 1 # 计数器加1
print("获取图片完毕") # 打印完成信息
# 程序入口
if __name__ == '__main__':
for i in range(1, 11): # 遍历1到10页
print('第{0}页'.format(i)) # 打印当前页码
url = 'http://huaban.com/search/?q=%E7%BE%8E%E8%85%BF&page={0}&per_page=20&wfl=1'.format(i) # 构造搜索URL
crawler = crawl_huaban(url) # 创建爬虫实例
start = time.perf_counter() # 记录开始时间
crawler.getImage() # 调用方法获取图片
end = time.perf_counter() # 记录结束时间
print('总共用时:%03f seconds\n\n' % (end - start)) # 打印用时
3. 代码解释归类
以下是对上述代码的归类解释:
导入模块
time
:用于测量代码执行时间。BeautifulSoup
:用于解析HTML和XML文档。webdriver
:Selenium库的一部分,用于自动化Web浏览器操作。urlretrieve
:从urllib.request
模块,用于从网络下载文件。
类定义:crawl_huaban
这个类是用于爬取花瓣网上的图片。
构造函数 __init__(self, url)
- 初始化类实例,接收一个
url
参数作为花瓣网的搜索页面地址。
方法 getHtml(self, url)
- 使用
webdriver.PhantomJS()
启动一个无界面的浏览器(PhantomJS)。 - 访问传入的
url
。 - 使用
BeautifulSoup
解析页面源代码。 - 关闭浏览器。
- 返回解析后的页面对象。
方法 getPage(self)
- 类似于
getHtml
方法,但是访问的是类的初始化参数self.url
。 - 返回解析后的页面对象。
方法 getImage(self)
- 获取页面内容。
- 解析页面中的所有图片链接。
- 遍历图片链接,对于每个链接:
- 构造图片页面的URL。
- 获取图片页面的HTML。
- 提取图片的源地址(
src
)。 - 构造完整的图片URL。
- 使用
urlretrieve
下载图片。 - 打印下载成功或失败的信息。
- 打印获取图片完毕的信息。
程序入口
- 使用
if __name__ == '__main__':
判断,确保以下代码只在直接运行此脚本时执行。 - 循环从第1页到第10页,构造每页的搜索URL。
- 对于每个URL,创建
crawl_huaban
类的实例。 - 记录开始时间,调用
getImage
方法下载图片。 - 记录结束时间,并打印总耗时。
注意事项
- 代码中使用了
webdriver.PhantomJS()
,这是一个无界面浏览器,但需要注意的是,PhantomJS已经不再维护,且可能不支持最新的Web技术。可以考虑使用webdriver.Chrome()
或其他浏览器驱动。 - 代码中的URL构造和图片下载部分依赖于花瓣网的页面结构,如果花瓣网的页面结构发生变化,代码可能需要相应的调整。
- 代码中的异常处理使用了简单的
try-except
块,实际应用中可能需要更详细的错误处理逻辑。
4.存在哪些问题
让我们来聊聊如何让代码更上一层楼,也欢迎大家在评论区多多交流哦!
-
性能提升:咱们的代码虽然能跑,但效率如何?有没有什么办法能让它跑得更快,比如多线程或异步IO?
-
智能下载:如何让爬虫更聪明,只下载我们想要的图片,比如通过图片尺寸、类型或者关键词过滤?
-
用户体验:代码运行时,怎么能让用户更清楚地知道当前进度,比如加上进度条或者百分比显示?
-
资源节省:下载一大堆图片时,怎么减少电脑的负担,比如限制同时下载的数量?
-
遵守规则:怎么确保咱们的爬虫遵守网站的规则,不去触犯法律和道德的红线?
-
应对变化:如果花瓣网的页面结构变了,咱们的爬虫代码要怎么快速适应?
-
避免重复:怎么确保不下载重复的图片,特别是当爬取的内容很多时?
-
突破限制:如果网站有反爬虫措施,咱们怎么合理应对,比如使用代理?
-
代码可维护性:随着时间的推移,网站结构可能会变化,咱们的代码怎么写才能方便未来的修改和维护?
-
数据存储方案:除了保存到本地,有没有更好的存储方案,比如云存储,方便咱们随时访问和管理图片?
这些讨论点不仅能帮助咱们优化代码,还能让咱们的技术更加成熟和稳健。大家有啥好主意,或者在实践中遇到的问题,都来聊聊吧!咱们一起头脑风暴,让这个小项目更加完善。别忘了,技术是死的,人是活的,咱们的智慧和创意能让代码活起来!
结语
嘿,朋友们,今天的小技巧就分享到这里了。咱们用Python爬虫把花瓣网上的美图扒拉下来,一键保存到桌面,是不是挺酷的?这不仅仅是个技术活,更是咱们对美好生活追求的体现。代码虽然简单,但乐趣无穷,对吧?
咱们今天的小教程,就像是给你的厨房里添了把新铲子,希望能帮你在代码的世界里翻炒出更多美味。但别忘了,技术是用来解决问题的,咱们在享受技术带来的便利时,也得注意别“炒糊”了——合法合规,尊重网站,不滥用爬虫。
如果你在实践中有啥新发现,或者有啥问题,咱们评论区见。独乐乐不如众乐乐,分享你的经验和问题,让我们一起进步。
最后,如果你觉得今天的分享对你有点帮助,那就别吝啬你的点赞、投币、收藏三连击,给咱们加加油!你的支持,就是我继续分享更多干货的动力!
咱们下回见,继续在代码的世界里探索新大陆!别忘了,代码之外,还有生活,记得抬头看看天空,享受生活哦!