Visio卷积神经网络模型(三)-网络卷积层示意图

就绘制这样的 一个卷积计算  示意图

 

这个的思路:就像上一篇 (二)一样,先绘制网格正方形,然后组合,然后旋转一定角度。就完成了。

这就是一个基本的思路。

下面开始

 然后,去除填充,修改线框粗细和颜色,如下(a)

 

                             (a)                                                                       (b)

选中其中一个

在弹出的窗口中设置 行 列 为3

 

 

同理,将另一个做成 7x7

 将小的组合后,设置顶层,然后移动到大的上面

然后

 

 

 接下来

 

 

 

剩下的 按照上面的方法就可以完成

深度学习绘图模板详解 1. 产品核心特点 全面覆盖模型架构:包含CNN、RNN、BiLSTM、Bi-LSTM-Attention、Transformer、V-Net、ResNet等主流深度学习模型,总计150+页模板,Visio专用模板17页,满足从基础到前沿的绘图需求。 元素独立可编辑:每个模块(如卷积层、注意力头、残差连接)均为独立矢量图形,支持直接剪切、缩放、颜色修改,无需从零绘制。 专业设计美学:采用科研论文级配色方案(如IEEE/Springer风格),图标简洁清晰,支持高分辨率导出(适用于期刊投稿)。 2. 适用场景 学术研究:快速绘制论文中的模型架构图、方法流程图,提升投稿效率。 项目报告:制作企业级AI项目汇报PPT,直观展示模型设计细节。 教学材料:教师备课或学生答辩时,快速生成可交互的神经网络示意图。 3. 核心模板示例 CNN架构:包含经典LeNet-5、AlexNet、ResNet-50等分层模块,支持空洞卷积、可变形卷积等变体。 Transformer系列:完整Encoder-Decoder结构、多头注意力机制、位置编码的可视化组件。 生成对抗网络(GAN):Generator与Discriminator的对抗训练流程图,支持Conditional GAN、CycleGAN等扩展模型。 时序模型:LSTM单元内部结构(输入门、遗忘门)、BiLSTM-Attention的跨步连接标注。 4. 使用优势 效率提升:从零绘制一张复杂模型图需2-3小时,使用模板仅需10分钟拖拽组合。 兼容性强:PPT模板支持Office 2016以上版本,Visio模板兼容Windows/Mac系统。 持续更新:根据前沿模型(如Vision Transformer、Swin Transformer)定期追加新模板。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值