tensorflow 三种优化器及其区别

本文介绍了TensorFlow中常用的三种优化器:GradientDescentOptimizer、MomentumOptimizer和AdamOptimizer。GradientDescentOptimizer基于梯度下降法;MomentumOptimizer引入动量项以加速收敛;AdamOptimizer采用自适应学习率,能更好地适应不同参数。实践中,选择合适的优化器和学习率对模型的训练效果至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在搭建神经网络的过程中,tensorflow提供了3种优化器,分别是:

import tensorflow as tf

tf.train.GradientDescentOptimizer(learning_rate).minimize(loss)

该优化器使用梯度下降法进行优化,其中learning_rate 是学习率,loss代表损失函数

利用梯度下降算法,使参数沿着损失函数梯度的反方向(梯度下降的方向)即损失减少的方向移动,实现参数的更新

 

 

tf.train.MomentumOptimizer(learning_rate, momentum).minimize(loss)

该优化器使用超参数更新,其中learning_rate是学习率,momentum是超参数,其更新公式如下:

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

VictorHan01

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值