互联网海量视频数据的存储

原文链接:http://www.docin.com/p-86312184.html?docfrom=rrela


一、背景

    互联网内容提供方式转变:用户创造内容。视频应用、网络游戏、搜索引擎等互联网衍生业务迅速发展,使得海量数据存储、管理和处理成为当今互联网公司面临的严峻问题。这些信息保存在存储设备上,便是高膨胀的海量数据,表1是不同互联网应用的规模。


    互联网应用海量数据的共性:

    1)用户群体大,增长速度快;

    2)数据总量大,增长速度快;

    3)数据类型多样,大小不一;

    4)数据操作模式较为固定,一致性要求较弱,对读写延时有一定要求;

    互联网应用的海量数据特性,对数据存储和处理提出了新的挑战,如下:

    1)TB级甚至PB级的存储系统,以适应海量数据的需求;

    2)良好的扩展性。在不中断服务的情况下,通过简单添置机器或者磁盘存储来扩展系统,满足不断增长的数据和用户群体需求;

    3)低时延、高吞吐的存储系统性能;

    4)丰富的存储类型,以满足互联网应用中结构化、半结构化甚至非结构数据的存储需求;

    5)灵活简单的并行编程模型进行海量数据处理,隐藏分布式环境下数据分布、容错等复杂性;

二、数据存储

   1、 传统技术:传统关系型数据库

    局限性:应用场景局限,着眼于面向结构化的数据,致力于事务处理,要求保持严格的一致性;关系模型束缚对海量数据的快速访问能力;缺乏对非结构化数据的处理能力;扩展性差。

    2、新兴数据存储系统:集中式数据管理系统、非集中式数据管理系统


三、数据处理

    快速从海量数据中抽取出关键信息用以提高互联网应用的质量、用户体验等,已经成为互联网企业之间竞争的关键技术问题。同时,大规模数据处理的研究,也是DISC应用研究的关键问题。

    并行计算

    解决大规模数据处理的方法就是并行计算。将大量数据分散到多个节点上,将计算并行化,利用多机的计算资源,从而加快数据处理的速度。目前,这种并行计算主要分为3大类:一类是广泛应用于高性能计算的MPI技术,一类是以Google、Yahoo为代表的互联网企业兴起的Map/Reduce计算,一类是微软提出的Dryad并行计算模型。

随处可见的视频监控,无非就是摄像头不停地抓拍录像。然而,一旦须要检索视频中的特定目标,人们面对的往往是在成千上万个小时的海量视频中大海捞针,传统上须要投入的人力和时间,简直让人不敢想象,也很不现实。因此,如何通过计算机程序快速从海量视频中搜索特定目标,已经成为当前视频检索和视频侦查迫切须要解决的问题。 当前市场存在的视频侦查系统,普遍仅仅是依赖于传统局限的“帧差法”、“背景建模法”、“颜色分类法”等,从视频中检测所有运动目标,开发出的系统大多停留在“视频摘要”、“视频浓缩”、“拌线检测”、“人车分类”等非常初期、浅显的检索阶段,并没有进行特定目标的搜索,在海量视频检索任务中,人工筛选工作量仍然非常巨大,甚至无法接受。此类视频检索系统,尽管有关公司宣传如何地增强案件侦查能力,实际应用效果却非常有限,经受不住实际案件的检验。 因此,近年来,越来越多的开发者将重点投入到“以图搜图”这一热点主题的研究上,希望能够取得明显进展成果。然而,因技术方面主要存在很大的困难和挑战,如同类别差异、视点变化、光照差异、遮挡问题、复杂背景等,指望单纯通过“以图搜图”计算的“图像相似度”搜索海量视频中的特定目标,研究进展举步维艰,实际应用效果也非常局限,满足不了复杂多变的海量视频侦查任务。 作者完全自主研发的“梯度视频搜索系统”,继承并突破传统图像处理技术,允许用户根据实际情况,自定义视频侦查任务,创新性地提出并构建“级联检测器检测+验证器校验”的多级多个神经网络组成的神经计算专家系统,实现海量视频“多目标多场景”的同时搜索。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值