ROS——坐标系管理、监听与广播、常用可视化工具

坐标系管理

在这里插入图片描述
x

TF功能包

在这里插入图片描述

小海龟追踪实验

  • ros版本(20.04)的tf安装命令: sudo apt-get install ros-noetic-turtle-tf

  • 解决因python版本出现的无法生成跟随海龟: sudo ln -s /usr/bin/python3 /usr/bin/python ( -s 软链接,符号链接)

  • ln命令(英文全拼:link files)命令是一个非常重要命令,它的功能是为某一个文件在另外一个位置建立一个同步的链接。
    当我们需要在不同的目录,用到相同的文件时,我们不需要在每一个需要的目录下都放一个必须相同的文件,我们只要在某个固定的目录,放上该文件,然后在 其它的目录下用ln命令链接(link)它就可以,不必重复的占用磁盘空间。

  • Linux文件系统中,有所谓的链接(link),我们可以将其视为档案的别名,而链接又可分为两种 : 硬链接(hard link)与软链接(symbolic link),硬链接的意思是一个档案可以有多个名称,而软链接的方式则是产生一个特殊的档案,该档案的内容是指向另一个档案的位置。硬链接是存在同一个文件系统中,而软链接却可以跨越不同的文件系统。
    不论是硬链接或软链接都不会将原本的档案复制一份,只会占用非常少量的磁碟空间。

  • 在执行view_frames出现错误: cannot use a string pattern on a bytes-like object

  • 解决方案: 将/opt/ros/noetic/lib/tf/view_frames文件第89行由 m = r.search(vstr) 修改为 m = r.search(str(vstr))(用str将vstr转化为string)。
    在这里插入图片描述

可视化工具

  • rviz: noetic 版本,直接在终端执行 rviz即可
    在这里插入图片描述
  • Fixed Frame: 选择world
  • Add选项:添加TF
    在这里插入图片描述

tf监听和广播

创建功能包

在这里插入图片描述

四元数

Quaternion(四元数)是一种扩展了复数概念的数学系统,由爱尔兰数学家威廉·罗文·汉密尔顿在1843年首次描述。四元数在三维空间的力学中被广泛应用。

一个四元数可以表示为:

q = a + bi + cj + dk

其中:

q 是四元数,
a, b, c, 和 d 是实数,
i, j, 和 k 是四元数的基本单位。
四元数的关键特性是乘法不满足交换律,也就是说 pq 并不一定等于 qp。

四元数在多个领域中都有应用,尤其是在计算机图形学、控制理论、信号处理、姿态控制、物理学和轨道力学中,因为它们提供了一种有效的方式去表示三维空间中的旋转或方向。

在电脑游戏和3D动画中,四元数常用于避免万向锁问题(Gimbal Lock),以及进行平滑的旋转插值(例如SLERP)。

RPY

在坐标系中,RPY代表“Roll(横滚)、Pitch(俯仰)和Yaw(偏航)”,这是描述一个刚体在三维空间中旋转的三个基本角度。这些术语最初源自航空和航海领域,用来描述飞行器或船只相对于地球的定向。

Roll(横滚):绕着物体自身的 x 轴旋转。如果考虑的是一个飞机,横滚是指机翼的上下翻转。
Pitch(俯仰):绕着物体自身的 y 轴旋转。俯仰是指飞机机头的上下移动。
Yaw(偏航):绕着物体自身的 z 轴旋转。偏航是指飞机机头向左或向右的转动。
在机器人学、计算机图形学和导航系统中,RPY 角也被称为欧拉角的一种特定序列。当描述物体的旋转时,通常会按照一个固定的顺序应用这三个旋转,这个顺序可以是 XYZ 或者 ZYX 等,这取决于具体的应用场景和坐标系约定。

RPY 角可以单独使用,也可以组合起来形成一个旋转矩阵或者四元数,以便更有效地进行计算和表示刚体的完整姿态。在机器人技术中,RPY 常用来描述机械臂末端执行器或相机等传感器相对于世界坐标系的位置和方向。

实现 tf 广播器

// 例程产生 tf 数据,并计算、发布 turtle2的速度指令
#include <ros/ros.h>
#include <tf/transform_broadcaster.h>
#include <turtlesim/Pose.h>

std::string turtle_name;

//pose回调函数
void poseCallback(const turtlesim::PoseConstPtr& msg){
    //创建tf的广播器
    static tf::TransformBroadcaster br;
    
    //初始化tf数据
    tf::Transform transform;
    transform.setOrigin(tf::Vector3(msg->x,msg->y,0.0));
    tf::Quaternion q;
    q.setRPY(0,0,msg->theta);
    transform.setRotation(q);
    
    //广播world与海龟坐标系之间的tf数据
    br.sendTransform(tf::StampedTransform(transform,ros::Time::now(),"world",turtle_name));
}

int main(int argc,char** argv){
  
  ros::init(argc,argv,"my_broadcaster");
  
  //输入参数作为海龟的名字
  if(argc != 2){
     ROS_ERROR("need turtle name as argument!");
     return -1;
  }
  turtle_name = argv[1];
  
  //订阅海龟位置
  ros::NodeHandle node;
  ros::Subscriber sub = node.subscribe(turtle_name+"/pose",10,&poseCallback);
  
  // 循环等待回调函数
  ros::spin();
  
  return 0;
}

实现tf监听器

#include <ros/ros.h>
#include <tf/transform_listener.h>
#include <turtlesim/Spawn.h>
#include <geometry_msgs/Twist.h>

int main(int argc,char **argv){
  
  ros::init(argc,argv,"my_tf_listener");
  
  ros::NodeHandle node;
  
  //请求产生turtle2
  ros::service::waitForService("/spawn");
  ros::ServiceClient add_turtle = node.serviceClient<turtlesim::Spawn>("/spawn");
  turtlesim::Spawn srv;
  add_turtle.call(srv);
  
  //创建发布turtle2速度控制指令的发布者
  ros::Publisher turtle_vel = node.advertise<geometry_msgs::Twist>("/turtle2/cmd_vel",10);
  
  //创建tf的监听器
  tf::TransformListener listener;
  
  ros::Rate rate(10.0);
  while(node.ok()){
     //获取turtle1与turtle2坐标系之间的tf数据
     tf::StampedTransform transform;
     try{
       // 判断坐标系中是否存在 turtle1 和 turtle2,持续三秒
       listener.waitForTransform("/turtle2","/turtle1",ros::Time(0),ros::Duration(3.0));
       // 获取tutle1 和 turtle2 的实时位置,将四元数存到transform变量中
       listener.lookupTransform("turtle2","/turtle1",ros::Time(0),transform);
     }
     catch(tf::TransformException &ex){
       ROS_ERROR("%s",ex.what());
       ros::Duration(1.0).sleep();
       continue;
     }
     //根据turtle1与turtle2坐标系之间的位置关系,发布turtle2的速度指令
     geometry_msgs::Twist vel_msg;
     vel_msg.angular.z = 4.0 * atan2(transform.getOrigin().y(),transform.getOrigin().x());
     vel_msg.angular.x = 0.5 * sqrt(pow(transform.getOrigin().x(),2) + pow(transform.getOrigin().y(),2));
     turtle_vel.publish(vel_msg);
     
     rate.sleep();
  }
  
  return 0;
}

配置监听规则

1

编译运行

  • 此处的… name:=turtle1_tf_broadcaster /turtle1 … 代表broadcaster__name的重命名
    在这里插入图片描述

launch启动文件

在这里插入图片描述

launch文件语法

在这里插入图片描述

参数设置

在这里插入图片描述

重映射与节点嵌套

在这里插入图片描述

更多方法

在这里插入图片描述

样例

在这里插入图片描述

自定义参数实例

在这里插入图片描述

广播与监听的实例

在这里插入图片描述

启动launch文件指令: roslaunch 功能包名 文件名.launch

常用可视化工具

在这里插入图片描述

通过rqt指令,将多个工具综合在同一界面

在这里插入图片描述

RVIZ:机器人数据可视化工具

在这里插入图片描述
在这里插入图片描述

工作区域

在这里插入图片描述

Gazebo

  • gazebo
    在这里插入图片描述

ROS用途

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

相关资源

在这里插入图片描述
在这里插入图片描述

<think>好的,我现在需要帮助用户了解ROS坐标系之间的连接方式和转换方法。根据用户提供的引用资料,我得先整理一下相关信息,确保回答准确且符合用户的需求。 首先,用户提到了几个引用,我需要逐一分析这些引用中的关键点。引用[1]提到了ROS中的坐标系知识,特别是REP 105标准,这可能涉及到标准坐标系的定义。引用[2]详细解释了TF的工作原理,包括如何通过订阅/tf话题来获取坐标系之间的变换关系,以及如何通过路径搜索找到两个坐标系之间的转换路径。引用[3]讨论了数据类型和转换函数,比如四元数、旋转矩阵等,还提到了TF类的使用,包括发布器和订阅器的接口。引用[4]提到了数据类型转换,比如RPY到四元数的转换。 接下来,我需要将这些信息组织成一个结构清晰的回答,涵盖用户关心的连接方式和转换方法。可能的步骤包括: 1. **坐标系连接方式**:解释TF树的结构,父子坐标系的关系,以及如何通过发布变换来建立连接。这里需要提到TransformBroadcaster发送变换信息到/tf话题。 2. **转换方法**:说明如何获取两个坐标系之间的变换关系,使用TransformListener订阅/tf,然后调用lookupTransform函数。同时,可能需要处理异常,比如坐标系不存在或时间不同步的情况。 3. **数据类型转换函数**:介绍ROS中使用的数据类型(如四元数、旋转矩阵、欧拉角等),以及如何在它们之间进行转换,比如使用tf库中的转换函数。 4. **代码示例**:给出具体的Python或C++代码示例,展示如何发布和监听坐标变换,以及如何进行数据类型的转换。这有助于用户实际操作。 5. **注意事项和应用场景**:提醒用户关于时间戳同步、TF树的维护,以及常见应用场景,如传感器数据融合、导航和机械臂控制等。 在整理过程中,需要注意引用对应的参考文献,比如在解释TF树时引用[2],在数据类型转换时引用[3]和[4]。同时,确保使用正确的中文术语,避免技术术语错误。 可能遇到的问题包括如何确保时间戳的一致性,如何处理多个坐标系的复杂变换链,以及数据类型转换时的常见错误。这些都需要在回答中适当提及,并提供解决方案或参考链接。 最后,生成的相关问题需要ROS坐标系相关,比如优化转换效率的方法、其他工具的比较、调试技巧等,这样用户如果有进一步的问题,可以自行查阅或继续提问。</think>### ROS坐标系连接转换方法详解 #### 一、坐标系连接方式 1. **父子坐标系关系** ROS通过**TF树**管理坐标系间的层级关系,每个坐标系必须有一个父坐标系(除根坐标系外)。例如,机器人底盘`base_link`的父坐标系可以是地图`map`,激光雷达`lidar`的父坐标系可以是底盘`base_link`。这种层级关系通过发布**静态或动态变换**实现[^1][^2]。 2. **变换发布机制** 使用`tf::TransformBroadcaster`类向`/tf`话题发布坐标系间的变换信息。例如发布底盘到雷达的静态变换: ```python import tf from geometry_msgs.msg import TransformStamped broadcaster = tf.TransformBroadcaster() transform = TransformStamped() transform.header.stamp = rospy.Time.now() transform.header.frame_id = "base_link" # 父坐标系 transform.child_frame_id = "lidar" # 子坐标系 transform.transform.translation = (0.1, 0, 0.5) # 平移量 transform.transform.rotation = tf.transformations.quaternion_from_euler(0, 0, 0) # 旋转量 broadcaster.sendTransform(transform) ``` #### 二、坐标系转换方法 1. **监听查询** 使用`tf.TransformListener`订阅`/tf`话题,通过`lookupTransform()`获取任意两个坐标系间的变换: ```python listener = tf.TransformListener() listener.waitForTransform("map", "lidar", rospy.Time(0), rospy.Duration(4.0)) (trans, rot) = listener.lookupTransform("map", "lidar", rospy.Time(0)) ``` 2. **数据类型转换** ROS提供多种几何类型转换函数[^3][^4]: - **欧拉角→四元数**:`quaternion_from_euler(roll, pitch, yaw)` - **四元数→旋转矩阵**:`quaternion_matrix([x,y,z,w])` - **坐标系变换矩阵合成**:`concatenate_matrices(trans_mat, rot_mat)` #### 三、关键注意事项 1. **时间同步** 查询变换时必须指定时间戳,若目标时间无对应坐标系数据会抛出`tf.ExtrapolationException`。建议使用`rospy.Time(0)`获取最新可用数据。 2. **TF树完整性** 所有相关坐标系必须通过变换连接成树状结构,若出现环路或断裂会导致查询失败。可通过`rqt_tf_tree`工具可视化检查。 3. **性能优化** 高频发布变换时建议使用`StaticTransformBroadcaster`发布静态变换,避免重复计算。 #### 四、典型应用场景 1. **多传感器融合** 将相机、雷达、IMU等传感器的数据统一转换到`map`坐标系下进行融合。 2. **导航定位** 通过`odom`→`base_link`的动态变换描述里程计信息,结合`map`→`odom`的校正实现定位[^2]。 3. **机械臂控制** 建立`base_link`→`arm_base`→`end_effector`的变换链,计算末端执行器位姿。 ```mermaid graph TD map --> odom odom --> base_link base_link --> lidar base_link --> camera base_link --> imu ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值