摘 要 在人工智能发展的潮流中,符号主义一直处于引导的地位,在不同的历史时期也创造了优秀的代表性成果。然而符号主义下的人工智能并没有达到可以使计算机像人类一样去思考问题的高度,想要计算机模拟人类的方式进行思考,先要理解人类思考的方式,人类思考问题就是基于抽象的概念的,简单概念堆叠成复杂概念,无数的概念再一层一层地搭建起了人的认知架构,概念与概念之间的关系组成观念,观念与观念互相联系,形成了逻辑自洽的认知网络,即构成了人的思想。另外,机器学习是现阶段解决很多人工智能问题的主流方法,作为一个独立的方向,正处于高速发展之中。然而,目前机器学习的主流算法都只能被用于单一的应用场景,因此,本文主要介绍了符号和符号主义的概念、符号主义是如何在认知架构中发挥作用,阐述了机器学习的优势及不足,思考符号主义与机器学习如何有机结合并在认知中发挥作用。
关键词:符号主义 机器学习 认知 人工智能
一、何为符号?何为符号主义?
理解符号主义,首先要理解符号的含义。那么符号是什么呢?所谓符号就是模式。任一模式,只要他能与其他模式相区别,就是一个符号[1]。例如,“猫”作为一个符号,这个符号代表外部世界中猫的群体。当我们在现实生活中看到猫这种个体时,我们会自然用“猫”这个符号去对其进行表征。从集合的角度去理解,每个符号可以表征一个群体的集合,不同的符号即代表不同的群体,而每个群体中的每个个体,就是该集合中的每个元素。同样引用“猫”的例子,假设“猫”这个符号表征现实中我们见到的猫的群体,则该符号就相当于一个名称为“猫”的集合,而每一只猫,都是该集合中的唯一元素。由符号的实体集合构成的系统称为物理符号系统,它是一台随时间运行处理符号集合结构体的机器[2]。物理包括了两个重要的特征:这个系统严苛遵从物理规律-系统是由工程系统和工程元件构成,所以这个系统是稳定的;尽管使用符号这个词来表明我们原来的意图,当系统并不局限于人类符号系统[3]。因此,首先,物理符号系统具有稳定性,即系统中的符号实体是固定的,且每个符号实体所表征的群体是固定的;其次,符号既可以是物理符号,也可以是抽象符号。例如数理逻辑就是一个物理符号系统:它的符号是一系列的单词例如“且”、“或”、“非”、“所有的”、“存在”等等;再比如国际象棋:它的符号就是棋盘中的每个棋子。
符号具有双重属性:1、表征外部事物的功能;即每个符号都具有表征特定的外部事物的群体的作用,某一群体由于某些相同的特征被相同的符号表征,不同群体由于群体间的不同特征被不同的符号表征。2、自身具有物理或形式上的特征,可以标志信息加工的操作。每个符号都有特定的所指或者意指,对不同的符号进行操作代表着对不同信息进行处理或加工。
目前,人工智能主要有三大学派,即符号主义、联结主义和行为主义。符号主义(Symbolism)是一种基于逻辑推理的智能模拟方法,又称为逻辑主义(Logicism)、心理学派(Psychlogism)或计算机学派(Computerism)。所谓符号主义,该学派认为:人类认知和思维的基本单元是符号,而认知过程就是在符号表示上的一系列操作。假设人是一个物理符号系统,计算机也是一个物理符号系统,基于物理符号系统的稳定性,计算机可以通过对符号进行操作来模拟人的认知和思维,完成类人的智能行为。这种方法的实质就是模拟人的左脑抽象逻辑思维,通过研究人类认知系统的功能机理,用某种符号来描述人类的认知过程,并把这种符号输入到能处理符号的计算机中,就可以模拟人类的认知过程,从而实现人工智能。可以把符号主义的思想简单的归结“认知即计算”。由于这种对人工智能的解释符合大部分人的认知,因此符号主义在人工智能领域一直处于主导地位。
表一 人工智能的三大学派
学派 |
联结主义 |
行为主义 |
符号主义 |
来源 |
仿生学 |
控制论 |
数理逻辑 |
支持者 |
麦卡洛克(McCulloch) |