自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(151)
  • 资源 (8)
  • 收藏
  • 关注

原创 Jupyter Notebook 中显示图片、音频、视频的方法汇总

本文总结了在Jupyter Notebook中显示图片、音频和视频的多种方法。图片显示支持IPython.display.Image、matplotlib、Pillow等多种方式;音频播放可通过IPython.display.Audio处理本地文件或音频数组;视频播放支持本地文件和网络视频,也可通过HTML嵌入在线视频。不同方法适用于不同场景,简单显示推荐使用IPython.display模块,处理数据则建议配合matplotlib等库。使用时需注意路径正确性、格式兼容性和文件大小问题。

2025-07-30 17:09:09 322

原创 华为昇腾NPU卡 文生视频[T2V]大模型WAN2.1模型推理使用

output_video是之前使用910B系列 NPU,Wan2.1-T2V-1.3B模型生成的,效果没有我之前用的Wan2.1-T2V-14B生成的质量好。下面详细说下文生视频的大模型详细部署过程。(硬件、软件配置和上次文生图片[T2I]及文生语音[T2A]一样。及(申请华为云AI Notebook。预装镜像:euler2.9-py310-torch2.1.0-cann8.0-openmind0.9.1-notebookjupyter lab中新建一个终端。

2025-07-30 16:55:59 748

原创 云服务商提供的大模型开发免费试用硬件配置对比

**摘要:**主流云服务商免费GPU资源对比显示,天翼云H800以80GB显存和900+ TFLOPS算力成为大模型训练首选,支持70B以上参数模型;腾讯云A100 64GB适合高显存推理;华为云昇腾910B提供国产化NPU方案,永久免费;阿里云A10则适合中小模型开发。天翼云H800在硬件配置上全面领先,但需注意地域限制和申请流程。建议根据模型规模、框架兼容性及地域可用性选择最优方案。(149字)

2025-07-28 11:16:36 954

原创 国内云服务器对于大模型开发免费试用硬件资源对比

主流云服务商大模型免费资源对比 阿里云提供PAI-DSW平台(A10/V100 GPU+8核CPU)700小时免费额度;天翼云覆盖国产昇腾NPU与国际GPU,支持1个月V100试用及DeepSeek模型免费API;华为云昇腾910B NPU永久免费,适配国产框架;腾讯云提供T4 GPU(833小时/月)和A100专项25小时试用。 核心差异:阿里云适合中小企业验证,天翼云满足国产化需求,华为云适配学术研究,腾讯云优势在高显存推理。需注意资源到期自动扣费风险,建议根据模型规模、框架兼容性及地域限制选择,并优先

2025-07-28 11:13:41 1111

原创 世界人工智能大会(WAIC)近几年(2020-2025)主要人物和议题汇总

本届大会不仅是技术成果的“阅兵场”,更是全球AI生态的“校准器”,通过产学研深度对话,为智能时代的协同发展提供中国方案。每年大会不仅是技术展示平台,更是全球AI生态的“风向标”,通过产学研对话加速技术落地与伦理框架构建。

2025-07-26 14:00:33 618

原创 华为昇腾NPU卡 文生音频[T2A]大模型suno/bark模型推理使用

本文介绍了在华为云昇腾NPU上部署Bark文本转语音大模型的完整过程。环境配置包括华为云Notebook(NPU 910B、8vCPU、24GB内存)和预装镜像。详细步骤:1)通过ModelScope下载40GB的Bark模型;2)执行模型推理代码生成语音;3)保存为WAV文件并播放。文章对比了不同NPU版本的输出质量,并提供了修改输入文本生成个性化语音的示例。整个过程无需额外安装Python包,适合快速部署文本转语音应用,为后续文本转视频(T2V)学习奠定基础。

2025-07-25 17:53:44 484

原创 Nvidia Tesla M60 16GB 为啥那么便宜?显卡类型及性能价格和用途总结

Nvidia Tesla M60 16GB显卡因技术定位过时、市场需求低迷而价格暴跌。作为2016年发布的专业计算卡,其Pascal架构已无法满足现代需求,缺乏游戏优化且驱动兼容性差,导致二手市场供应过剩。当前性能(8.1 TFLOPS)远低于2025年主流显卡(如RTX 5060的23.22 TFLOPS),在专业领域也被新一代计算卡取代。300元低价可能涉及翻新或欺诈,需谨慎购买。建议用户根据需求选择合适显卡:游戏玩家考虑RTX 50系列,专业用户选择认证显卡,企业计算则优先Tesla H200等新品。

2025-07-25 10:14:16 938

原创 BeanCurrentlyInCreationException: Error creating bean with name ‘eventLogAsyncServiceImpl‘:

摘要: Spring框架出现BeanCurrentlyInCreationException循环依赖异常,原因是eventLogAsyncServiceImpl被注入未完全初始化的原始版本到qqwry中。建议通过getBeanNamesForType禁用提前初始化检查。解决方案为调整aspectjweaver依赖版本至1.9.7,修复因版本不匹配导致的代理问题。异常堆栈显示Bean创建流程冲突,需避免过度类型匹配引发的循环引用。

2025-07-24 16:29:10 274

原创 【ERROR: x264 not found using pkg-config】

摘要:该错误表明FFmpeg编译时缺少x264库支持。解决方法包括:1)通过系统包管理器安装x264开发库(如libx264-dev);2)确保已安装pkg-config工具;3)验证x264是否被正确识别;4)必要时可手动指定x264路径或从源码编译。最后需重新配置和编译FFmpeg,若问题持续可检查config.log日志文件获取详细信息。(149字)

2025-07-24 16:23:41 415

原创 ComfyUI在MacBook Pro 2019上的安装与配置尝试记录

本文详细介绍了在配备Intel UHD Graphics 630的MacBook Pro 2019上安装和配置ComfyUI的完整流程。从系统要求、依赖安装到模型下载和性能优化,提供了逐步指导,包括如何尝试启用Metal后端加速、推荐小型模型以及解决常见问题的方法。虽然集成显卡存在性能限制,但通过量化模型、降低分辨率等优化措施,仍可实现基本功能运行。文中还提供了替代方案建议,确保用户在遇到兼容性问题时有其他选择。

2025-07-24 16:20:33 513

原创 华为昇腾NPU卡 文生图[T2I]大模型stable_diffusion_v1_5模型推理使用

摘要:本文详细介绍了在华为云Notebook环境下使用OpenMind和NPU加速实现文生图的全过程。首先配置NPU 910B硬件环境和预装镜像,通过git克隆OpenMind源码并安装依赖。安装完成后设置环境变量,使用StableDiffusionPipeline加载模型,调用NPU进行图像生成,最后在Jupyter Notebook中展示生成的图片。整个过程包含环境配置、依赖安装、代码调试和结果可视化等关键步骤,为在昇腾平台实现AI绘画提供了完整指南。(149字)

2025-07-24 15:51:39 255

原创 无类域间路由(CIDR)和网络地址转换(NAT)是怎样优化IP地址短缺的

CIDR和NAT是缓解IPv4地址短缺的两大核心技术:CIDR通过无类别地址划分(如192.168.1.0/24)和路由聚合优化IP分配与路由效率;NAT则通过地址转换实现私有IP访问公网,支持多设备共享一个公网IP。二者作用互补,CIDR解决地址分配僵化问题,NAT解决地址数量不足问题,共同支撑了现代互联网的运行。简言之,CIDR让IP地址"用得更巧",NAT让IP地址"用得更少"。

2025-07-24 10:00:27 354

原创 网络 IP 地址总结

本文总结了IPv4和IPv6的核心知识要点。IPv4地址分为公有地址(全球唯一)和私有地址(内网专用),其中私有地址包括10.0.0.0/8、172.16.0.0/12和192.168.0.0/16三类,分别对应不同规模的网络需求。特殊IP地址如127.0.0.1(环回地址)用于本地测试,0.0.0.0用于默认路由配置。IPv6通过128位地址空间解决了IPv4地址枯竭问题,具备原生安全支持和简化管理等优势。文章还澄清了两个常见误区:一是A/B/C类地址是独立分类,不存在依赖关系;二是网络通信不依赖特定地址

2025-07-24 09:58:09 491

原创 超越上下文限制:用于长程推理的潜意识线索《BEYOND CONTEXT LIMITS: SUBCONSCIOUS THREADS FOR LONG-HORIZON REASONING》论文阅读总结

摘要: 论文提出TIM(Thread Inference Model)和专用推理引擎TIMRUN,突破传统大语言模型(LLM)在长程推理和复杂工具调用中的局限性。TIM通过递归子任务树结构和动态KV缓存修剪(保留0-2个相关子任务),以JSON格式生成结构化推理轨迹,实现单次调用完成多跳工具调用。TIMRUN引擎支持动态内存管理与位置嵌入重用,减少50%以上KV缓存占用。实验表明,在STEM任务(MATH500)和研究问答(Datacommons QA)中,TIM性能媲美传统多代理架构,且工具调用吞吐量显著

2025-07-23 14:24:17 408

原创 arXiv.org

摘要(148字): arXiv从1991年高能物理预印本平台发展为覆盖8大学科的开放学术基础设施,30年间收录超240万篇论文,推动科学传播民主化。其核心目标是打破学术垄断,通过即时发布加速研究进程,并坚守非营利开放原则。面临审核压力与资金短缺等挑战,arXiv正探索AI辅助审核与社区共治模式,持续扩大多学科影响力。作为开放科学标杆,它重塑了“快速共享优先”的学术文化,未来将深化技术集成与全球协作,巩固其“科学公共品”地位。

2025-07-23 10:01:45 565

原创 <另一种思维:语言模型如何展现人类的时间认知>读后总结

摘要: 研究探讨了大语言模型(LLMs)如何自发形成类似人类的时间认知机制。通过多层面分析发现,LLMs会建立主观时间参考点(约2025年),其时间感知符合韦伯-费希纳定律的压缩特性,且该特性随模型规模增大而增强。神经元分析揭示了时间偏好神经元采用对数编码方式,与生物神经系统趋同。训练语料的非线性时间结构为LLMs认知提供基础。研究表明LLMs的时间认知是内部系统对外部数据的"主观构建",与人类认知存在深层相似性,这对AI对齐研究提出了新挑战——需要关注模型内部认知框架的构建过程。

2025-07-22 17:57:06 903

原创 认识自我的机器人:麻省理工学院基于视觉的系统让机器了解自身机体

摘要:麻省理工学院CSAIL研发出新型机器人控制系统"神经雅可比场"(NJF),仅需视觉输入即可让机器人自主学习控制。该系统通过摄像头观察机器人随机运动,建立内部模型理解身体对控制指令的反应,无需复杂传感器或预先编程。NJF已在多种机器人上测试成功,包括软体机械手和刚性手臂,实现12Hz实时控制。该技术突破传统建模限制,使机器人能像人类一样通过观察学习动作,为农业、建筑等非结构化环境应用开辟新可能。研究获《自然》杂志发表,有望降低机器人应用门槛。

2025-07-22 17:27:40 424

原创 基于模拟的流程为灵巧机器人定制训练数据

摘要:麻省理工学院研究团队开发了"PhysicsGen"系统,通过虚拟现实演示生成大量机器人训练数据。该系统将少量人类演示转化为数千次模拟,帮助不同机器人高效学习新技能。实验显示,该方法使机器人任务完成率提升60%,协作效率提高30%。未来有望扩展至更多任务类型,并为构建机器人基础模型奠定基础。该技术结合了人类示范与算法优化优势,可帮助机器人适应复杂物理环境。研究成果将在机器人科学与系统会议上展示。

2025-07-22 17:13:19 477

原创 ES2025 新特性(已完成提案)

ECMAScript 2025(ES2025)是JavaScript即将发布的重要版本,引入了多项新特性。已完成提案包括:类装饰器(为类/方法添加元数据)、模式匹配(增强版switch语法)、异步生成器改进、符号元数据支持和数组分组方法。2025版本延续了近年JavaScript的发展趋势,重点关注语法增强和元编程能力。回顾近年版本演变,从ES2015的基础现代化(箭头函数、Promise),到ES2017的异步优化(async/await),再到近年的实用工具增强(数组方法、错误处理),JavaScrip

2025-07-22 11:32:02 580

原创 ECMAScript(简称 ES)和 JavaScript 的关系

摘要: ECMAScript(ES)是JavaScript的标准化规范(如ES6/ES2015),由ECMA国际制定,定义语言核心特性(语法、内置对象等)。JavaScript是ES的主要实现,包含标准特性+宿主环境API(如浏览器DOM、Node.js模块)。关键区别:ES是规范文档,JavaScript是具体实现。ES新特性(如Promise、箭头函数)需通过JavaScript引擎(V8、SpiderMonkey)落地。开发中需注意版本兼容性(Babel/polyfill)。理解两者关系有助于掌握语言

2025-07-22 10:22:26 1095

原创 http服务器之MIME 类型总结(Multipurpose Internet Mail Extensions,多用途互联网邮件扩展类型)

MIME类型是HTTP协议中标识文件内容类型的标准机制,通过Content-Type响应头告知客户端如何处理文件。格式为主类型/子类型(如text/html、image/jpeg)。正确的MIME类型至关重要,错误的类型会导致浏览器无法正常解析文件(如将HTML显示为纯文本)。常见静态文件如HTML、CSS、JavaScript、图片等都有对应的标准MIME类型。服务器通常根据文件扩展名自动匹配MIME类型,开发者也可手动配置。正确设置MIME类型能确保网页资源被正确加载和渲染。

2025-07-22 09:50:39 919

原创 JSX(JavaScript XML)‌简介

JSX是JavaScript语法扩展,允许在JS中直接书写类似HTML的标记结构,主要用于React等框架构建UI组件。其核心特性包括:类HTML语法、嵌入JavaScript表达式、组件化结构和属性传递。JSX需编译为React.createElement()调用,生成虚拟DOM对象。优势在于直观的UI描述、高效开发体验和良好类型支持。它并非HTML模板,而是JS语法糖,除React外也可用于Vue/SolidJS等框架。JSX通过融合HTML可读性与JS动态能力,成为现代前端开发的核心UI描述方案。

2025-07-21 15:04:19 615

原创 用少得多的代码实现高性能计算

论文的第一作者Yuka Ikarashi是麻省理工学院电气工程与计算机科学专业的博士生,也是计算机科学与人工智能实验室(CSAIL)的成员,她表示Exo 2可以将调度代码总量减少100倍,并在多个不同平台上实现与最先进的实现方案相媲美的性能,其中包括为许多机器学习应用提供支持的基本线性代数子程序(BLAS)。现有USL(如最初的Exo)的局限性之一是其调度操作相对固定,这使得在不同的“内核”(高性能库中的各个组件)间复用调度代码变得困难。的新编程语言所展示的成果。

2025-07-21 14:00:59 1128

原创 麻省理工学院研究人员推出用于数据库的生成式人工智能

我们认为,当我们从单纯查询数据转向对模型和数据提出问题时,我们将需要一种类似的语言,教会人们向拥有数据概率模型的计算机提出连贯的问题。引入概率模型可以捕捉更复杂的相互作用。例如,有了这种经过校准的不确定性,如果有人向模型询问针对数据集中代表性不足的少数群体患者的不同癌症治疗的预测结果,GenSQL会告诉用户它不确定,以及不确定的程度,而不是过于自信地推荐错误的治疗方法。研究人员注意到,SQL 没有提供一种有效的方法来整合概率人工智能模型,但与此同时,使用概率模型进行推理的方法并不支持复杂的数据库查询。

2025-07-21 13:58:57 352

原创 麻省理工学院研究人员推出用于数据库的生成式人工智能

我们认为,当我们从单纯查询数据转向对模型和数据提出问题时,我们将需要一种类似的语言,教会人们向拥有数据概率模型的计算机提出连贯的问题。引入概率模型可以捕捉更复杂的相互作用。例如,有了这种经过校准的不确定性,如果有人向模型询问针对数据集中代表性不足的少数群体患者的不同癌症治疗的预测结果,GenSQL会告诉用户它不确定,以及不确定的程度,而不是过于自信地推荐错误的治疗方法。研究人员注意到,SQL 没有提供一种有效的方法来整合概率人工智能模型,但与此同时,使用概率模型进行推理的方法并不支持复杂的数据库查询。

2025-07-21 11:22:47 239

原创 让人工智能生成的代码在任何语言中都更加准确

MIT研究人员开发了一种新方法,能自动引导大语言模型生成符合语言规则且无错误的代码。该方法采用概率算法,在生成过程中早期筛选低质量输出,显著提高了计算效率。实验显示,该方法使小型模型在Python代码生成等任务上表现优于大型商业模型。该技术有望帮助非专业人士通过自然语言生成复杂查询,并在分子生物学、机器人等领域提高AI输出的准确性。研究团队认为,这种方法不仅提升编程效率,更为实现机器辅助数据分析和自然语言交互系统奠定了基础。

2025-07-21 11:12:09 367

原创 人工智能真的能编程吗?研究勾勒出自主软件工程的障碍

摘要:MIT研究团队发表论文《面向软件工程的人工智能:挑战与路径》,指出当前AI在软件开发中仍面临重大挑战。尽管代码生成取得进展,但实际软件工程涉及重构、迁移、测试等复杂任务,现有AI工具难以胜任。研究揭示三大瓶颈:缺乏真实场景的评估标准、人机交互渠道狭窄、处理大规模专有代码库困难。作者呼吁建立开源社区,改进数据收集和评估体系,开发透明工具,最终实现AI与人类工程师的协同工作。该研究为AI在软件工程领域的未来发展指明了方向,强调增强而非取代程序员的重要性。

2025-07-21 10:33:55 505

原创 Tomcat 目录结构及JAR包说明

Apache Tomcat 是一个开源的 Servlet 容器,用于运行 Java Web 应用程序。

2025-07-21 09:47:19 1005

原创 if (a == 1 && a == 2 && a == 3)返回true的问题思考

摘要:本文探讨如何通过改写对象比较逻辑,使条件if (a == 1 && a == 2 && a == 3)返回true。前端方案通过重写对象的valueOf方法,在每次比较时动态改变返回值;后端Java则通过反射修改Integer缓存或重写equals方法实现。这些非常规实现揭示了编程语言比较机制的灵活性,也说明规则可以被创造性突破。两种方案分别在JavaScript和Java中演示了如何通过隐式类型转换和对象比较机制达成目标,展示了编程语言特性的巧妙运用。

2025-07-18 18:16:54 251

原创 NFS(网络文件系统)概念及操作命令

NFS服务配置指南摘要 本文提供NFS(网络文件系统)的详细配置指南,分为服务端和客户端两部分: 服务端配置: 安装nfs-utils和rpcbind依赖包 创建共享目录并设置权限(建议755权限,nobody用户) 编辑/etc/exports配置文件,设置共享路径(如/webapps/NFS_Files)和访问权限参数(rw/sync/all_squash等) 启动rpcbind和nfs-server服务并设置开机自启 可选配置防火墙开放NFS相关端口 客户端配置: 使用showmount命令查看服务端

2025-07-18 16:36:39 853

原创 idea CE版本 java项目 “找不到符号” log等错误

摘要:Maven编译时出现"找不到符号"错误,通常由JDK版本不匹配导致。解决方法:依次点击File→Project Structure→Project/Module,统一修改SDK版本为正确的JDK版本(附操作截图说明)。该问题常见于多版本JDK共存环境,通过统一编译环境配置即可解决。

2025-07-17 16:29:41 90

原创 编程语言(脚本等)基础概念总结

本文对比了编程语言的分类特性,主要分为编译型与解释型、强类型与弱类型两大维度。编译型语言(如C、Java)需预先编译为二进制文件,执行效率高但跨平台性差;解释型语言(如JavaScript、Python)直接逐行解释执行,开发灵活但性能较低。强类型语言(如Python、Java)严格限制类型转换,提高代码安全性;弱类型语言(如JavaScript、PHP)允许隐式类型转换,灵活性高但易隐藏错误。不同语言特性适用于不同场景,开发者需根据项目需求权衡选择。

2025-07-17 11:24:46 935

原创 文本生成视频的主要开源模型

当前快速生成视频的开源模型主要包括ModelScope、CogVideo、VideoCrafter和Stable Video Diffusion等,均免费可本地运行但需较强硬件。Stable Video Diffusion质量最高但资源需求大;CogVideo速度快适合入门;ModelScope易用且多语言支持;VideoCrafter灵活性好。所有模型生成的视频较短(5-30秒),质量不及闭源商业产品,需注意伦理风险。推荐根据硬件和需求选择:高性能选Stable Video Diffusion,低配置选C

2025-07-14 09:58:30 917 1

原创 当你需要开发一个新项目时,该如何选择合适的编程语言?

摘要:选择编程语言时需综合考虑项目需求(如Python适合数据科学,C++适合系统编程)、性能要求(编译型vs解释型)、团队经验、社区支持、可维护性、跨平台能力、预算时间及安全性(如Rust)。通过评估这些因素并进行原型验证,可确保选择最适合的语言。

2025-07-14 09:43:08 149

原创 pip方式安装MindSpore Ascend版本

本文档介绍在Ascend环境的Linux系统上使用pip安装MindSpore的步骤。主要包含:1) 系统要求:需Ubuntu/CentOS等操作系统、Python 3.9-3.11、GCC 7.3.0及昇腾AI软件包;2) 安装方法:通过Miniconda配置Python环境,安装昇腾AI处理器配套软件和GCC后,根据系统架构选择对应版本MindSpore进行pip安装;3) 环境配置:设置运行时环境变量;4) 验证安装:提供两种测试方法确认安装成功。文档详细说明了各依赖项的安装流程和注意事项,适用于x8

2025-07-08 15:33:07 545

原创 python: ModuleNotFoundError: No module named ‘XXX‘

摘要:当Python无法导入已安装的packaging模块时,解决方案包括:1)检查Python和pip路径匹配;2)手动添加系统site-packages到Python路径;3)使用完整路径导入;4)验证模块文件存在。备选方案有:用户空间重装、创建符号链接或强制重装依赖。终极方案是创建新的Conda环境或使用系统Python,也可永久配置PYTHONPATH环境变量。这些方法逐步解决环境配置和路径问题,确保模块正常导入。

2025-07-08 15:28:06 397

原创 Tesla的FSD 架构设计

特斯拉的FSD(完全自动驾驶)架构设计以,结合和,形成了一套高度集成的系统。

2025-07-04 17:24:28 763

原创 2025年后端主流框架对比和竞争格局及趋势发展

2025年后端开发技术格局呈现三大趋势:云原生主导、AI深度融合与性能极限突破。主流框架分化明显,Java生态中Spring Boot 3.2通过虚拟线程和GraalVM原生编译实现性能飞跃,Quarkus 3.0成为云原生标杆;Python的FastAPI在AI部署领域爆发,Go和Rust则在边缘计算场景表现突出。核心技术聚焦五大方向:云原生架构深化(容器化/Serverless)、AI辅助开发(自动生成80%代码)、WebAssembly性能革命、零信任安全升级以及边缘计算爆发。企业选型需结合场景需求,

2025-07-03 16:48:18 1258

原创 2025 年前端主流框架对比和竞争格局及趋势发展

2025年的前端开发已进入性能、全栈、AI三位一体的新阶段。企业需根据业务场景选择框架:React适合复杂生态与企业级整合,Vue适合快速迭代与亚洲市场,Svelte适合性能敏感场景,Angular适合欧美大型项目。开发者应重点提升全栈能力、性能优化技术及AI辅助开发技能,同时关注Web3、元宇宙等新兴领域的技术机遇。未来,框架竞争将更聚焦于开发者体验、生态扩展能力及跨端整合效能,技术选型需兼顾当前业务需求与长期技术演进趋势。

2025-07-03 16:27:03 1685

原创 TPU、NPU、GPU、CPU的区别和联系

摘要: CPU、GPU、TPU和NPU是四种不同类型的处理器,各有特点:CPU擅长通用计算和低延迟任务;GPU适合图形渲染和大规模并行计算;TPU专为深度学习中的张量运算优化;NPU则针对嵌入式设备的低功耗AI加速。CPU适用于日常办公,GPU用于深度学习训练,TPU高效处理AI任务,NPU常见于智能手机等边缘设备。选择时需根据具体需求,如通用计算用CPU,并行计算用GPU,深度学习用TPU,边缘AI用NPU。

2025-07-01 17:58:07 404

华为昇腾NPU卡 文生图T2A大模型suno/bark模型推理使用输出suno/bark

音频文件,suno/bark output。

2025-07-25

程序员的数学3 ruby代码:线性代数-ruby代码下载.zip

程序员的数学3 ruby代码:线性代数-ruby代码下载.zip

2025-07-23

【Python科学计算】Anaconda基础教程:从安装到高级技巧及环境管理详解文档所属领域(

内容概要:本文档详细介绍了Anaconda的基础知识、安装步骤、核心组件、环境与包管理、使用案例、高级技巧以及常见问题解决方法。Anaconda是一个用于科学计算的Python和R语言的开源发行版,具有简化包管理和环境配置的功能。文档从Anaconda简介出发,阐述了其优势和核心组件,接着讲解了详细的安装步骤,包括下载、安装、验证和更新conda的方法。随后,深入探讨了环境和包管理的具体操作,提供了多个实用案例,如创建数据分析环境和项目中使用特定版本包等。最后,介绍了高级技巧,如使用国内镜像源加速下载、环境克隆与迁移等,并对常见问题给出了解决方案。 适合人群:对Python科学计算感兴趣的初学者,尤其是数据科学家、研究人员和相关领域的学生。 使用场景及目标:①帮助用户快速上手Anaconda,掌握其基本功能;②通过具体案例指导用户进行环境创建和包管理;③提供高级技巧以提高工作效率,如加速包下载和环境迁移;④解决常见的使用问题,确保用户顺利使用Anaconda。 阅读建议:建议读者按照文档顺序逐步学习,先理解Anaconda的基本概念和安装方法,再通过实践案例巩固所学知识,遇到问题时可参考常见问题部分或查阅官方文档,同时利用提供的资源链接进一步扩展学习。

2025-05-28

【数据科学与机器学习】Anaconda基础教程及使用案例:涵盖环境管理、包管理及多领域项目实践

内容概要:本文详细介绍了Anaconda的基础教程及使用案例。Anaconda是专为数据科学、机器学习、深度学习等领域打造的开源Python发行版,它集成了conda包管理器、Python以及众多科学计算包。基础教程涵盖下载安装、环境管理、包管理、镜像源配置及其他常用命令;使用案例则展示了其在数据科学、机器学习、深度学习和科学计算项目中的具体应用,强调了conda环境管理对项目依赖一致性与隔离性的保障作用,以及对GPU加速的支持; 适合人群:从事数据科学、机器学习、深度学习或科学计算领域的初学者及有一定经验的研发人员; 使用场景及目标:①快速搭建包含特定版本Python及相关科学计算库的开发环境;②创建、管理和分享项目所需的独立环境,确保不同项目间依赖关系互不干扰;③利用conda高效管理软件包,简化开发流程,提高工作效率; 阅读建议:读者应按照教程顺序逐步操作,熟悉Anaconda的各项功能,并尝试构建自己的项目环境,以加深理解和掌握程度。

2025-05-28

软件工程UML图元素符号详解:类图、用例图、活动图及状态图符号图例与应用对比

内容概要:本文档详细介绍了UML图的四种主要类型(类图、用例图、活动图、状态图)的符号图例及其应用场景。类图涵盖依赖、关联、聚合、组合、泛化和实现六种关系类型的符号特征,用于系统静态结构建模;用例图展示了参与者与用例间的交互、用例间包含、扩展和泛化的关系,适用于用户需求可视化;活动图通过起点、终点、活动节点、转移、决策与分支合并、分叉与汇合等元素描绘流程逻辑与并行操作;状态图则以状态、初始状态、终止状态、转换和判定点来表示对象状态转换,常用于状态机设计和异常流程处理。此外,还简要对比了这四种图的核心用途、动静态属性及典型应用场景。; 适合人群:软件工程师、系统分析师、程序员以及所有需要进行软件建模的相关人员。; 使用场景及目标:①帮助开发者理解并掌握UML图绘制规则;②为项目开发前期的需求分析、架构设计提供理论依据;③提高团队成员之间交流效率,确保对系统的共同理解。; 其他说明:本文档不仅提供了详细的UML图符号解释,还通过表格形式直观地呈现了每种关系或元素的图形表示方法,便于读者快速查阅和学习。同时,对于每种UML图的应用场景进行了总结,有助于读者根据实际需求选择合适的建模工具。

2025-05-21

振荡状态空间模型(LinOSS)-翻译版.pdf

LinOSS

2025-05-07

受大脑神经动力学启发的新型AI模型

受大脑神经动力学启发的新型AI模型

2025-05-07

神经网络中表示的形成论文翻译版

资料分享,机器翻译的,将就看吧

2025-04-15

神经网络中表示的形成论文英文版

资料分享

2025-04-15

数据库面试专题及答案.pdf

数据库面试题

2020-04-07

Rust language documents.pdf

Rust 编程语言文档

2023-12-09

daily notes aaaaaaaa

daily notes aaaaaaaa

2023-10-07

spark toolsssss

spark toolsssss

2023-10-07

hadooppppppppppppppp

hadooppppppppppppppp

2023-10-07

docker commands log

docker commands log

2023-10-07

apache-maven-3.8.5-bin.zip

apache-maven-3.8.5-bin.zip

2022-03-19

Hadoop Impala connect hive2 jdbc related

Hadoop Impala connect hive2 jdbc related Hadoop Impala connect hive2 jdbc related

2018-05-24

spark-3.0.1-bin-hadoop3.2.tar

jar 包文件 java jar 包文件 java jar 包文件 java jar 包文件 java

2020-11-18

swfplayer.zip

hujiang网校播放器

2020-04-10

AndroidFailedtoallocatememory8错误提示的原因及解决办法

Android启动模拟器Failedtoallocatememory8错误提示的原因及解决办法

2014-08-28

Linux权限修改方法.txt

Linux 权限修改方法 让服务器上的文件夹有读写等权限

2014-08-28

hive service

hive service jar hive service jar hive service jar hive service jar hive service jar

2018-07-25

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除