麻省理工学院计算机科学和人工智能实验室(CSAIL)的研究人员开发了一种受大脑神经振荡启发的新型人工智能模型,目标是显著推进机器学习算法处理长数据序列的方式。
人工智能经常难以分析长时间展开的复杂信息,如气候趋势、生物信号或金融数据。一种称为“状态空间模型”的新型人工智能模型是专门为更有效地理解这些顺序模式而设计的。然而,现有的状态空间模型经常面临挑战——在处理长数据序列时,它们可能会变得不稳定或需要大量计算资源。
为了解决这些问题,CSAIL研究人员康斯坦丁·鲁什(T. Konstantin Rusch)和丹妮拉·鲁斯(Daniela Rus)开发了他们所说的“线性振荡状态空间模型”(LinOSS),该模型利用了强迫谐振子的原理——这是一个深深植根于物理学并在生物神经网络中观察到的概念。这种方法提供了稳定、富有表现力和计算效率的预测,而没有对模型参数的过度限制条件。
“我们的目标是捕捉生物神经系统中的稳定性和效率,并将这些原则转化为机器学习框架,”拉什解释道。"有了LinOSS,我们现在可以可靠地学习远程交互,即使是跨越数十万个或更多数据点的序列。
LinOSS模型在确保稳定预测方面是独一无二的,它需要比以前的方法少得多的限制性设计选择。此外,研究人员严格证明了该模型的通用逼近能力,这意味着它可以逼近任何连续的、与输入和输出序列相关的因果函数。
实证测试表明,LinOSS在各种苛刻的序列分类和预测任务中始终优于现有的最先进模型。值得注意的是,LinOSS在涉及极端长度序列的任务中比广泛使用的曼巴模型高出近两倍。
由于其重要性得到认可,该研究被选为ICLR 2025的口头演讲——这一荣誉只授予前1%的提交者。麻省理工学院的研究人员预计,LinOSS模型可以显著影响任何受益于准确高效的长期预测和分类的领域,包括医疗分析、气候科学、自动驾驶和金融预测。
“这项工作体现了数学严谨性如何带来性能突破和广泛应用,”罗斯说。“通过LinOSS,我们为科学界提供了理解和预测复杂系统的强大工具,弥合了生物灵感和计算创新之间的差距。”
该团队认为,像LinOSS这样的新范式的出现将是机器学习从业者感兴趣的基础。展望未来,研究人员计划将他们的模型应用于更广泛的不同数据模式。此外,他们认为LinOSS可以为神经科学提供有价值的见解,有可能加深我们对大脑本身的理解。
他们的工作得到了瑞士国家科学基金会、施密特AI2050计划和空军人工智能加速器部门的支持。