自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(115)
  • 资源 (8)
  • 收藏
  • 关注

原创 Tesla的FSD 架构设计

特斯拉的FSD(完全自动驾驶)架构设计以,结合和,形成了一套高度集成的系统。

2025-07-04 17:24:28 159

原创 2025年后端主流框架对比和竞争格局及趋势发展

2025年后端开发技术格局呈现三大趋势:云原生主导、AI深度融合与性能极限突破。主流框架分化明显,Java生态中Spring Boot 3.2通过虚拟线程和GraalVM原生编译实现性能飞跃,Quarkus 3.0成为云原生标杆;Python的FastAPI在AI部署领域爆发,Go和Rust则在边缘计算场景表现突出。核心技术聚焦五大方向:云原生架构深化(容器化/Serverless)、AI辅助开发(自动生成80%代码)、WebAssembly性能革命、零信任安全升级以及边缘计算爆发。企业选型需结合场景需求,

2025-07-03 16:48:18 553

原创 2025 年前端主流框架对比和竞争格局及趋势发展

2025年的前端开发已进入性能、全栈、AI三位一体的新阶段。企业需根据业务场景选择框架:React适合复杂生态与企业级整合,Vue适合快速迭代与亚洲市场,Svelte适合性能敏感场景,Angular适合欧美大型项目。开发者应重点提升全栈能力、性能优化技术及AI辅助开发技能,同时关注Web3、元宇宙等新兴领域的技术机遇。未来,框架竞争将更聚焦于开发者体验、生态扩展能力及跨端整合效能,技术选型需兼顾当前业务需求与长期技术演进趋势。

2025-07-03 16:27:03 825

原创 TPU、NPU、GPU、CPU的区别和联系

摘要: CPU、GPU、TPU和NPU是四种不同类型的处理器,各有特点:CPU擅长通用计算和低延迟任务;GPU适合图形渲染和大规模并行计算;TPU专为深度学习中的张量运算优化;NPU则针对嵌入式设备的低功耗AI加速。CPU适用于日常办公,GPU用于深度学习训练,TPU高效处理AI任务,NPU常见于智能手机等边缘设备。选择时需根据具体需求,如通用计算用CPU,并行计算用GPU,深度学习用TPU,边缘AI用NPU。

2025-07-01 17:58:07 314

原创 【NVIDIA 智能汽车技术公开课-观看直播课体验】

NVIDIA提出无图驾驶方案,突破城市级AI辅助驾驶瓶颈。传统高精地图面临更新慢、覆盖低、成本高等痛点,NVIDIA通过三大技术重构自动驾驶架构:1)BEVTransformer实时生成动态语义地图;2)生成式AI实现"地图即传感器",数据量降千倍;3)场景记忆引擎让车辆自主进化。搭载Thor芯片的2000TOPS算力系统支持实时处理多传感器数据。该方案可实现秒级地图更新、全覆盖和趋零边际成本,或将推动L2+大规模普及,形成"动态+静态"双层地图新范式。

2025-07-01 16:17:37 1000

原创 error: unrecognized arguments: -f

在Jupyter Notebook中使用argparse模块时,系统会尝试解析Jupyter自动添加的内核参数,导致报错。解决方案包括:1)禁用默认参数解析并手动指定空参数列表;2)重构代码避免使用argparse,直接通过构造函数传递参数;3)添加环境判断,仅在脚本运行时解析真实参数。最佳实践是重构代码,通过类构造函数直接传递参数,这样既兼容各种环境,又避免参数解析冲突,提高代码可维护性。具体实现可选择禁用argparse默认参数解析,或完全改用参数直接传递的方式。

2025-07-01 14:13:57 680

原创 Multiple frameworks detected, including: {‘, ‘.join(_frameworks)}.

摘要: 在魔乐社区配置大模型训练环境时,出现"Multiple frameworks detected"错误,原因是同时存在PyTorch(pt)和MindSpore(ms)框架冲突。解决方法包括:1)临时方案:在Python中设置环境变量OPENMIND_FRAMEWORK="pt"或调用框架选择函数;2)永久方案:通过pip uninstall移除其中一个框架,或将环境变量写入启动脚本。建议创建专用虚拟环境或检查框架兼容性,尤其使用华为NPU时需确保版本匹配。验证

2025-06-26 14:39:48 741

原创 Linux子账户无root权限安装make命令

若你没有管理员(root)权限,却要在openEuler系统上安装make,可采用源码编译的办法。如果服务器无法访问外网,你可以先在能联网的机器上下载好源码包,然后通过scp等方式上传到服务器的这个目录。通过上述步骤,你就能在没有管理员权限的情况下,成功在openEuler系统上安装make了。openEuler系统子账户,裸版子系统,无make等命令,于是尝试安装。要是显示版本信息,就表明make已经安装好了,无需再进行安装操作。配置编译选项,将make安装到自己主目录下的一个文件夹中,比如。

2025-06-25 18:08:34 409

原创 libtool: error: ‘/usr/.local/lib/libgmp.la‘ is not a valid libtool archive

摘要:安装gcc时因依赖库路径错误导致编译mpc失败,提示"libgmp.la不是有效的libtool存档"。原因是configure时指定的prefix参数路径与实际不符。解决方法:1)编辑~/.local/lib/libgmp.la和/home/xx/.local/lib/libmpfr.la文件,将其中路径修正为当前用户实际路径;2)重新执行make和install即可完成安装。问题根源在于配置文件中的硬编码路径与用户实际安装路径不匹配。

2025-06-24 15:23:42 260

原创 linux替代wget的下载方法汇总

摘要: 当系统未安装wget时,可通过多种方式下载文件: 命令行工具:使用预装的curl(如curl -O URL)、aria2c(多线程加速)或Python脚本(urllib.request/requests)。 编程语言:通过Bash的/dev/tcp、Perl的LWP::Simple模块实现基础下载。 其他方法:浏览器下载、SCP传输或ftp命令(针对FTP链接)。 推荐场景:日常使用curl;大文件选aria2c;无工具环境可尝试Bash/Python脚本。长期使用建议安装wget或curl。

2025-06-23 11:01:43 329

原创 XXX : command not found问题

*背景:**当Linux某个组的成员使用账号时,可能会遇到没有安装的命令的问题。错误通常是由于命令未安装、路径配置不正确或权限不足导致的。检查这些文件是否包含错误的PATH设置或命令别名。如果问题仍然存在,可能是系统环境配置异常,建议联系系统管理员检查全局配置。super user给子账户安装命令的时候少安装了。环境变量包含的目录中才能被找到。子账户可能没有安装所需的软件。在Linux子账户(非root账户)中遇到。需要在Linux分配的子系统中预先安装。子账户的shell配置(如。

2025-06-20 18:07:48 256

原创 保持健康·保持睿智

定期反思经历与所学,问自己“今天学到了什么?”或“如何在未来应用这些知识?

2025-06-20 16:12:19 392

原创 Jupyter Notebook 中显示图片

本文介绍了在Jupyter Notebook中显示图片的四种方法:1)使用Markdown语法直接插入图片;2)通过matplotlib库读取并显示图片;3)利用IPython的display模块展示本地或网络图片;4)使用PIL(Pillow)库打开并显示图片。Markdown方法最简单,适用于静态图片,而Python库方法更灵活,适合需要动态处理的场景。每种方法都提供了示例代码,用户可根据具体需求选择合适的方式。

2025-06-20 15:52:50 446

原创 pip install使用国内源

摘要: 解决pip安装超时问题可通过切换国内镜像源:1)临时使用-i参数指定阿里云/清华等源;2)永久配置全局源,修改pip.conf或pip.ini文件。推荐阿里云、清华等国内源提升下载速度。若需卸载特定版本包,使用pip uninstall 包名==版本号并验证结果,注意依赖兼容性。批量卸载可编写Shell脚本实现。(150字)

2025-06-16 14:55:34 558

原创 Jupyter notebook中的感叹号!魔法命令介绍

在Jupyter Notebook中,!是魔术命令符号,用于执行系统命令。当看到!python -m venv signlang_env时,表示直接在Jupyter中创建名为signlang_env的虚拟环境。这个功能允许用户不切换终端就能运行命令行操作,保持工作流程的连贯性。类似命令还有%cd切换目录、!ls查看文件等。但需注意:该语法仅适用于Jupyter环境,普通Python脚本不支持,且命令执行不会自动影响Notebook的Python变量状态。

2025-06-13 14:03:18 439

原创 数据存储单位之“Ti” 与 “TB” 的区别(二进制与十进制存储单位换算简介)

摘要: 计算机存储单位存在两种换算标准:十进制(TB、GB)与二进制(TiB、GiB)。1 TB = 1000⁴ B,而1 TiB = 1024⁴ B,导致实际容量差异(如1 TB ≈ 0.909 TiB)。厂商常用十进制标称存储设备,系统按二进制显示,故1 TB硬盘实际约931 GiB。单位层级从bit到YB,每级差1024/1000倍,二进制单位更精确,但实际应用中常混用引发误解(如存储设备标称与系统显示的容量差异)。需注意区分符号(TB/TiB)及换算方式,避免混淆。

2025-06-13 10:40:14 750

原创 魔乐社区openmind微调实践记录

本文介绍了在魔乐社区平台上微调大语言模型Qwen2.5-0.5B的完整流程。通过申请NPU卡资源后,首先配置环境并安装openmind工具包,然后下载预训练模型和身份数据集。通过修改数据集中的身份参数(如将名称改为"张三"),并使用yaml配置文件设置训练参数,最终完成500步的全参数微调训练。微调后的模型成功改变了原始输出,证明了模型定制化的可行性。该实验展示了从环境配置到模型微调、推理的完整闭环,为理解大模型训练流程提供了实践参考。

2025-06-12 12:37:58 955

原创 基本多线程编译make命令

如何在FFmpeg编译中使用多线程加速 摘要:编译FFmpeg时使用多线程可大幅节省时间。核心方法是添加-j参数,如make -j8使用8线程。推荐命令: make -j$(nproc)自动匹配CPU核心数 或手动指定make -j4/make -j8 注意事项: 线程数建议为物理核心数×2 内存不足时减少线程数 可结合ccache进一步加速 首次编译仍需10-30分钟,但多线程能提速6-8倍

2025-06-11 18:00:45 346

原创 MacBook Pro2019 安装WAN2.1文生视频记录

最近使用豆包、即梦等软件做视频时,都有次数限制🚫,很快就用完了。我在想能不能本地部署个模型,这样就无限制了。想法有了,手头只有台2020年的Macbook Pro 2019(i9 + 64GB),简单调研了下,应该可以使用CPU模式跑小的模型,很好奇,想验证能不能行。

2025-06-11 11:35:52 710

原创 Python虚拟环境venv和conda环境有什么区别?

虚拟环境和Conda环境是两种隔离Python项目依赖的工具,主要区别在于:虚拟环境(如venv)仅隔离Python包,依赖系统底层环境,适合简单Python项目;Conda环境则完全独立,能管理Python和非Python依赖(如C库),支持多语言,更适合数据科学等复杂项目。前者通过pip安装包,后者使用conda命令。Conda提供更彻底的隔离和跨平台兼容性,而虚拟环境更轻量。选择取决于项目需求:纯Python开发用虚拟环境,涉及复杂依赖或多语言时用Conda。

2025-06-10 09:38:57 520

原创 MacBook pro 修改Homebrew 为中国源

注意:这时候git可能会断,出现early EOF问题。在执行上面代码前设置git 缓存。每次使用Homebrew安装都会卡在Updating Homebrew…在~/.bash_profile中添加下列设置,设置中科大源。然后执行brew update。他会访问GitHub,会很慢。最后更改成功,执行很快。

2025-06-09 17:30:26 348

原创 git: early EOF

摘要:在克隆Homebrew核心仓库时出现"RPC failed; curl 56 Recv failure"错误,通常由网络不稳定或缓冲区过小导致。解决方法包括:1)增大Git的http.postBuffer至1GB;2)禁用core.compression;3)调整HTTP超时和重试参数;4)使用代理或国内镜像源(如清华镜像);5)手动下载仓库作为最后手段。建议操作前测试网络连接,问题解决后重置Git配置。该问题多与网络环境相关,可尝试切换网络或稍后重试。(148字)

2025-06-09 15:58:23 474

原创 主流深度学习框架总结

深度学习框架是用于开发和训练深度学习模型的软件工具,以下是一些主流和常用的深度学习框架,按照应用场景和特点分类介绍:

2025-06-09 09:28:23 394

原创 【自动思考记忆系统】demo (Java版):添加【工具链编排】和【知识关联分析】功能

本文介绍了一个基于Java的自动思考记忆系统实现,主要包含以下核心功能: 知识表示体系:通过Knowledge类实现带有ID、内容、来源、时间戳和关联关系的数据结构,支持知识间的关联添加与分析。 知识集合管理:KnowledgeSet类提供知识存储、合并和查询功能,使用Map结构实现高效检索。 工具链编排系统:ToolChain类支持工具的动态添加、顺序执行和升级替换,实现灵活的处理流程编排。 记忆存储系统:MemorySystem类提供长期记忆存储、上下文记忆和关键词索引功能,通过多级存储结构优化知识管理

2025-06-04 10:34:36 334

原创 【自动思考记忆系统】demo (Java版)

这篇文章提出了一种创新的"自动思考与记忆模型",旨在突破传统编程模式,实现从大数据到知识的自动化处理与演进。该模型包含五大核心组件:大数据集、知识集、工具集、思考引擎和记忆系统,形成了一个动态的知识处理闭环。通过Java代码实现,展示了数据如何经工具处理生成知识,并持续改进知识库的完整流程。系统特别设计了记忆功能,能够存储历史知识并提供上下文关联,为人工智能系统的持续学习和进化提供了可行框架。

2025-06-03 18:13:43 967

原创 【华为开发者空间 x DeepSeek】+ 超级快速的搭建体验

华为开发者空间实战指南:华为开发者空间(https://developer.huaweicloud.com/space/home?utm_source=csdndspace&utm_adplace=yscxdeepseek),是为全球开发者打造的专属开发者空间,致力于为每位开发者提供一台云主机、一套开发工具和云上存储空间,汇聚昇腾、鸿蒙、鲲鹏、GaussDB、欧拉等华为各项根技术的开发工具资源,并提供配套案例指导开发者 从开发编码到应用调测,基于华为根技术生态高效便捷的知识学习、技术体验、应用创新。

2025-05-30 18:45:27 688

原创 复刻真实世界的虚拟系统Goal

开发一款能够完全复刻真实世界的虚拟系统确实是一个极具挑战性的任务,因为它涉及到深度模拟多个维度的人类世界,包括情感、心理、物理环境等多个方面。以下是一些。

2025-05-30 17:34:33 382

原创 更换Homebrew 源

摘要: 本文介绍如何查看和修改Homebrew源以切换至国内镜像(如中科大、清华、阿里云),提升下载速度。包含查看当前源、修改为镜像源、恢复官方源的具体命令,并提醒注意中科大镜像的系统限制、环境变量影响及更新问题。适用于macOS/Linux用户优化Homebrew使用体验。

2025-05-29 14:09:24 988

原创 Java代码存储位置总结

本文对比了Java中5种内存存储区域:栈内存存储局部变量和方法帧,线程私有;堆内存存储对象实例,线程共享需同步;方法区存放类信息和静态变量;本地方法栈处理Native方法调用;程序计数器记录线程执行位置。通过表格对比了各区域的存储内容、线程安全性、GC回收等特性,并指出栈速度最快但空间小,堆可动态扩展但需GC管理。最后强调合理选择存储方式对性能优化的重要性,需注意线程安全和内存溢出问题。

2025-05-29 10:25:07 418

原创 Neo4j简介及安装

Neo4j是一款开源的图数据库管理系统,采用节点和关系模型存储数据,擅长处理复杂关联数据。其核心特点包括原生图存储、高效的路径查询、Cypher查询语言以及高扩展性。适用于知识图谱、社交网络、推荐系统等场景,相比关系型数据库在关联查询上性能更优。提供社区版、企业版及云服务,支持多种编程语言和可视化工具,是处理动态网络结构的理想选择。

2025-05-28 16:48:27 645

原创 指定JDK运行单个Java测试代码

Java编译执行方式演变 在Java开发中,不同版本对代码执行方式有显著差异。Java 11+引入了直接运行源码文件的功能,无需预先编译。对于JDK 1.0-10版本,需先使用javac编译为.class文件,再通过java命令执行。 关键区别: 旧版本(JDK 1.0-10):必须分两步执行 javac x.java 和 java x 新版本(JDK 11+):支持单步执行 java x.java 应用场景: 当服务器无法全局安装特定Java版本时,可解压指定版本到本地路径使用 新版本简化了单文件测试流程

2025-05-28 16:15:29 252

原创 Podman(Pod Manager)简介

**Podman 是一款由红帽开发的开源容器管理工具,旨在替代 Docker,支持运行和管理 OCI 容器及镜像。其核心优势包括无守护进程架构、轻量化设计、更高安全性(支持非 root 运行和 SELinux/AppArmor)以及原生 Pod 管理功能(类似 Kubernetes Pod)。Podman 兼容 Docker 命令与镜像,支持容器/镜像全生命周期管理、多阶段构建及与 Docker Compose/Kubernetes 生态集成。相比 Docker,它省去了守护进程开销,更适合开发测试、云原生

2025-05-21 16:09:13 816

原创 解释:神经网络

过去十年中,表现最出色的人工智能系统,如智能手机的语音识别和谷歌的自动翻译,主要依赖于深度学习技术。深度学习,即神经网络方法,自1944年由芝加哥大学的研究人员提出后,经历了多次兴衰。尽管在1969年因马文·明斯基和西摩·帕佩特的研究而一度被“杀死”,但在20世纪80年代复兴,并在21世纪第二个十年因图形处理器(GPU)的发展而再次崛起。神经网络通过分析训练示例来学习执行任务,其结构松散地模仿人脑,由大量相互连接的简单处理节点组成。尽管神经网络在理论和应用上取得了显著进展,但其不透明性仍然是理论家关注的焦点

2025-05-19 18:04:22 477

原创 ffmpeg转码后的视频有横条纹和彩虹横条等乱彩问题

在使用ffmpeg时,若在安装过程中添加了--disable-asm参数,可能会导致色彩异常。解决方法是移除该参数。然而,移除后可能会遇到提示缺少yasm或nasm的问题,这通常是由于环境变量未正确配置所致。确保正确配置环境变量后,重新运行配置命令,如示例中的./configure,并指定相关路径和参数,以顺利安装ffmpeg并避免色彩异常问题。

2025-05-19 17:50:18 364

原创 长距离无线传输技术总结

建议根据具体场景的速率、时延和部署成本综合选择,新兴技术需关注各国频谱政策(如Type 2HK模块限北美/澳洲使用)。

2025-05-19 17:39:36 879

原创 受大脑神经动力学启发的新型AI模型

为了解决这些问题,CSAIL研究人员康斯坦丁·鲁什(T. Konstantin Rusch)和丹妮拉·鲁斯(Daniela Rus)开发了他们所说的“线性振荡状态空间模型”(LinOSS),该模型利用了强迫谐振子的原理——这是一个深深植根于物理学并在生物神经网络中观察到的概念。麻省理工学院的研究人员预计,LinOSS模型可以显著影响任何受益于准确高效的长期预测和分类的领域,包括医疗分析、气候科学、自动驾驶和金融预测。LinOSS模型在确保稳定预测方面是独一无二的,它需要比以前的方法少得多的限制性设计选择。

2025-05-07 09:51:55 189

原创 2025年经济状态及普通人的机会分析

银行资金充裕期是财富再分配的窗口期,普通人可通过"政策套利+资产增值+技能升级"三重路径实现阶层跃升。关键在于保持信息敏感度(如定期查看政务服务平台政策)、提升金融素养(学习基金定投、资产配置)、把握新兴赛道(低空经济、银发服务、AI应用)。历史经验表明,每轮流动性宽松都孕育着改变命运的机会,从2008年的淘宝店主到2020年的直播主播,抓住趋势者往往能实现财富跃迁。

2025-05-07 09:30:30 2117

原创 Nginx负载均衡配置

user nginx;

2025-05-06 18:09:56 662

原创 打成jar 包以后,运行时找不到文件路径?

2.打包的时候把resources中的文件打包。打成jar包后,路径src/*可能都找不到了。3.运行jar包,你就可以正常运行jar包了。采用stream流的方式获取音频。采用Stream流方式获取图片。1.修改获取文件的方式。

2025-05-06 11:24:30 538

原创 验证逻辑和规模

合同影子逻辑在证明安全设计的安全性和识别不安全设计中的漏洞方面展示了改进的性能,特别是对于像BOOM这样的复杂处理器。为此,麻省理工学院计算机科学与人工智能实验室(CSAIL)的一个团队开发了一个正式的验证方案,用于对在所谓的“寄存器传输级别”(RTL)工作的无序处理器进行安全猜测。现有技术通常难以在复杂设计上实现可扩展性,并且缺乏跨不同防御机制的可重用性,但CSAIL研究人员的“合同影子逻辑”方法利用计算机架构洞察力,通过结合从处理器执行中提取必要信息的影子逻辑来减少验证所需的手动工作。

2025-05-06 10:42:54 212

【Python科学计算】Anaconda基础教程:从安装到高级技巧及环境管理详解文档所属领域(

内容概要:本文档详细介绍了Anaconda的基础知识、安装步骤、核心组件、环境与包管理、使用案例、高级技巧以及常见问题解决方法。Anaconda是一个用于科学计算的Python和R语言的开源发行版,具有简化包管理和环境配置的功能。文档从Anaconda简介出发,阐述了其优势和核心组件,接着讲解了详细的安装步骤,包括下载、安装、验证和更新conda的方法。随后,深入探讨了环境和包管理的具体操作,提供了多个实用案例,如创建数据分析环境和项目中使用特定版本包等。最后,介绍了高级技巧,如使用国内镜像源加速下载、环境克隆与迁移等,并对常见问题给出了解决方案。 适合人群:对Python科学计算感兴趣的初学者,尤其是数据科学家、研究人员和相关领域的学生。 使用场景及目标:①帮助用户快速上手Anaconda,掌握其基本功能;②通过具体案例指导用户进行环境创建和包管理;③提供高级技巧以提高工作效率,如加速包下载和环境迁移;④解决常见的使用问题,确保用户顺利使用Anaconda。 阅读建议:建议读者按照文档顺序逐步学习,先理解Anaconda的基本概念和安装方法,再通过实践案例巩固所学知识,遇到问题时可参考常见问题部分或查阅官方文档,同时利用提供的资源链接进一步扩展学习。

2025-05-28

【数据科学与机器学习】Anaconda基础教程及使用案例:涵盖环境管理、包管理及多领域项目实践

内容概要:本文详细介绍了Anaconda的基础教程及使用案例。Anaconda是专为数据科学、机器学习、深度学习等领域打造的开源Python发行版,它集成了conda包管理器、Python以及众多科学计算包。基础教程涵盖下载安装、环境管理、包管理、镜像源配置及其他常用命令;使用案例则展示了其在数据科学、机器学习、深度学习和科学计算项目中的具体应用,强调了conda环境管理对项目依赖一致性与隔离性的保障作用,以及对GPU加速的支持; 适合人群:从事数据科学、机器学习、深度学习或科学计算领域的初学者及有一定经验的研发人员; 使用场景及目标:①快速搭建包含特定版本Python及相关科学计算库的开发环境;②创建、管理和分享项目所需的独立环境,确保不同项目间依赖关系互不干扰;③利用conda高效管理软件包,简化开发流程,提高工作效率; 阅读建议:读者应按照教程顺序逐步操作,熟悉Anaconda的各项功能,并尝试构建自己的项目环境,以加深理解和掌握程度。

2025-05-28

软件工程UML图元素符号详解:类图、用例图、活动图及状态图符号图例与应用对比

内容概要:本文档详细介绍了UML图的四种主要类型(类图、用例图、活动图、状态图)的符号图例及其应用场景。类图涵盖依赖、关联、聚合、组合、泛化和实现六种关系类型的符号特征,用于系统静态结构建模;用例图展示了参与者与用例间的交互、用例间包含、扩展和泛化的关系,适用于用户需求可视化;活动图通过起点、终点、活动节点、转移、决策与分支合并、分叉与汇合等元素描绘流程逻辑与并行操作;状态图则以状态、初始状态、终止状态、转换和判定点来表示对象状态转换,常用于状态机设计和异常流程处理。此外,还简要对比了这四种图的核心用途、动静态属性及典型应用场景。; 适合人群:软件工程师、系统分析师、程序员以及所有需要进行软件建模的相关人员。; 使用场景及目标:①帮助开发者理解并掌握UML图绘制规则;②为项目开发前期的需求分析、架构设计提供理论依据;③提高团队成员之间交流效率,确保对系统的共同理解。; 其他说明:本文档不仅提供了详细的UML图符号解释,还通过表格形式直观地呈现了每种关系或元素的图形表示方法,便于读者快速查阅和学习。同时,对于每种UML图的应用场景进行了总结,有助于读者根据实际需求选择合适的建模工具。

2025-05-21

振荡状态空间模型(LinOSS)-翻译版.pdf

LinOSS

2025-05-07

受大脑神经动力学启发的新型AI模型

受大脑神经动力学启发的新型AI模型

2025-05-07

神经网络中表示的形成论文翻译版

资料分享,机器翻译的,将就看吧

2025-04-15

神经网络中表示的形成论文英文版

资料分享

2025-04-15

数据库面试专题及答案.pdf

数据库面试题

2020-04-07

Rust language documents.pdf

Rust 编程语言文档

2023-12-09

daily notes aaaaaaaa

daily notes aaaaaaaa

2023-10-07

spark toolsssss

spark toolsssss

2023-10-07

hadooppppppppppppppp

hadooppppppppppppppp

2023-10-07

docker commands log

docker commands log

2023-10-07

apache-maven-3.8.5-bin.zip

apache-maven-3.8.5-bin.zip

2022-03-19

Hadoop Impala connect hive2 jdbc related

Hadoop Impala connect hive2 jdbc related Hadoop Impala connect hive2 jdbc related

2018-05-24

spark-3.0.1-bin-hadoop3.2.tar

jar 包文件 java jar 包文件 java jar 包文件 java jar 包文件 java

2020-11-18

swfplayer.zip

hujiang网校播放器

2020-04-10

AndroidFailedtoallocatememory8错误提示的原因及解决办法

Android启动模拟器Failedtoallocatememory8错误提示的原因及解决办法

2014-08-28

Linux权限修改方法.txt

Linux 权限修改方法 让服务器上的文件夹有读写等权限

2014-08-28

hive service

hive service jar hive service jar hive service jar hive service jar hive service jar

2018-07-25

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除