- 博客(7)
- 资源 (8)
- 收藏
- 关注
原创 一个使用卷积神经网络经典的AI例子
一个经典的AI例子是使用卷积神经网络(Convolutional Neural Network,CNN)进行图像分类。以下是一个简单的例子,使用PyTorch和一个包含卷积层、池化层和全连接层的小型CNN模型,对手写数字进行识别。这个例子使用了MNIST数据集,一个包含手写数字(0-9)的数据集。模型在每个 epoch 中使用训练数据进行训练,然后保存了训练好的模型参数。你可以根据自己的需求更改模型结构、数据集,或者使用更复杂的模型进行训练。
2024-01-13 22:08:51
629
1
原创 在OpenCV C++ 如保加载PyTorch生成的.pth文件
以下是一些基本的步骤,假设你已经安装了LibTorch。请确保你使用的LibTorch版本与你在Python中使用的PyTorch版本兼容。请注意,此示例假设你的模型是一个TorchScript模型。如果你的模型不是TorchScript模型,你可能需要在保存时将其转换为TorchScript格式。在C++代码中,你需要使用LibTorch的API来加载PyTorch保存的模型。编译你的C++代码,并确保你的项目链接了正确版本的LibTorch库。为你实际模型的路径,并根据你的模型输入大小调整。
2024-01-13 22:04:58
1054
1
原创 GitHub Copilot 更新及使用教程
通过遵循上述步骤和最佳实践,你可以更好地利用这一工具,提高编码效率,同时也能够为其改进提供宝贵的反馈。接受 Copilot 提供的建议后,你可以根据实际需求对代码进行修改。Copilot 提供的建议是基于学到的上下文和模式,但有时你可能需要进行调整以满足准确性和完整性的要求。在编写涉及复杂算法或极端情况下的代码时,建议仔细审查生成的代码,确保其正确性。GitHub 鼓励用户积极参与,你的反馈有助于改进和优化 Copilot 的功能。在需要更明确指导 Copilot 的地方,可以使用注释来提供额外的上下文。
2024-01-12 17:04:18
1161
1
原创 windows Copilot 更新及使用教程
GitHub Copilot是一款基于人工智能的代码自动补全工具,由GitHub和OpenAI共同开发。它使用GPT(Generative Pre-trained Transformer)模型,能够根据你的代码上下文,自动生成代码建议。这使得编写代码变得更加高效,尤其是对于一些常见的编程任务。
2024-01-12 16:51:02
726
1
原创 程序员转战人工智能之路
通过系统的学习、实践和与社区互动,程序员可以逐步掌握人工智能领域的核心技能,走上成功的职业道路。在这个充满活力的领域,持续学习和不断适应变化将是成功的关键。本文将介绍一些可行的方法,帮助程序员顺利迈入人工智能之路,包括学习路径、实践建议以及行业趋势的分析。人工智能的崛起给程序员提供了更广阔的发展空间,但也伴随着新的挑战。在这个充满机遇和竞争的领域,程序员需要精心制定计划,以便更好地适应这个快速演变的行业。人工智能领域的需求一直在迅速增长,掌握相关技能的程序员将更容易找到高薪的就业机会。
2024-01-12 16:08:59
513
1
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人