一个经典的AI例子是使用卷积神经网络(Convolutional Neural Network,CNN)进行图像分类。以下是一个简单的例子,使用PyTorch和一个包含卷积层、池化层和全连接层的小型CNN模型,对手写数字进行识别。
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
# 定义简单的CNN模型
class SimpleCNN(nn.Module):
def __init__(self, num_classes=10):
super(SimpleCNN, self).__init__()
self.conv1 = nn.Conv2d(1, 32, kernel_size=3, stride=1, padding=1)
self.relu = nn.ReLU()
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1)
self.fc1 = nn.Linear(64 * 7 * 7, num_classes)
def forward(self, x):
x = self.conv1(x)
x = self.relu(x)
x = self.pool(x)
x = self.conv2(x)
x = self.relu(x)
x = self.pool(x)
x = x.view(x.size(0), -1)
x = self.fc1(x)
return x
# 数据转换
transform = transforms.Compose([
tra