图像增强
图像增强是数字图像处理中的重要技术,旨在改善图像质量或突出图像中的有用信息,为后续的分析和处理提供更好的基础。
空间域图像增强
灰度变换定义
灰度变换是一种点处理(point processing)操作,可表示为:
s = T(r)
其中:
-
r
:输入图像像素的原始灰度值(通常范围[0,L-1],如8位图像为[0,255]) -
s
:变换后的输出灰度值 -
T
:灰度变换函数
核心特性
-
单像素操作:输出值仅取决于对应位置的输入值
-
无邻域信息:不依赖周围像素值
-
可逆性:部分变换存在逆变换
1. 线性变换
(1) 基本形式
s = a·r + b
a
:控制对比度(斜率)
a>1:对比度增强
0<a<1:对比度降低
a<0:明暗反转
b
:控制亮度(截距)
b>0:亮度增加
b<0:亮度降低
(2) 对比度拉伸
def contrast_stretch(img, r1, r2, s1, s2):
"""分段线性变换"""
# 构建查找表
lut = np.zeros(256, dtype=np.uint8)
for i in range(256):
if i < r1:
lut[i] = s1/r1 * i
elif i < r2:
lut[i] = (s2-s1)/(r2-r1) * (i-r1) + s1
else:
lut[i] = (255-s2)/(255-r2) * (i-r2) + s2
return cv2.LUT(img, lut)
(3) 灰度级切片
-
突出特定范围:
s = max_intensity, if a ≤ r ≤ b r, otherwise
-
屏蔽其他区域:
s = max_intensity, if a ≤ r ≤ b 0, otherwise
2. 非线性变换
(1) 对数变换
s = c·log(1 + r)
-
特性:
-
压缩高灰度值区域
-
扩展低灰度值区域
-
-
应用:
-
显示傅里叶频谱
-
增强暗部细节
-
-
OpenCV实现:
def log_transform(img, c=42): return cv2.convertScaleAbs(c * np.log1p(img.astype('float32')))
(2) 幂次变换(Gamma校正)
s = c·r^γ
-
参数影响:
-
γ<1:增强亮部细节(如X光片)
-
γ>1:增强暗部细节(如低照度图像)
-
c:缩放系数(通常=1)
-
-
显示器校正:
-
CRT显示器固有γ≈2.2
-
需要预补偿:γ≈0.45
-
-
OpenCV实现:
def gamma_correction(img, gamma=1.5): inv_gamma = 1.0 / gamma table = np.array([((i / 255.0) ** inv_gamma) * 255 for i in np.arange(0, 256)]).astype("uint8") return cv2.LUT(img, table)
(3) 指数变换
s = c·(e^r - 1)
-
与对数变换效果相反
-
扩展高灰度值,压缩低灰度值
-
适用于增强亮部细节
import cv2
import numpy as np
# 线性变换
def linear_transform(img, alpha=1.5, beta=30):
return cv2.convertScaleAbs(img, alpha=alpha, beta=beta)
# 分段线性变换
def piecewise_linear(img, breakpoints=[(0,0), (100,60), (200,220), (255,255)]):
x = np.arange(256)
y = np.interp(x, [p[0] for p in breakpoints], [p[1] for p in breakpoints])
return cv2.LUT(img, y.astype('uint8'))
# 对数变换(压缩高亮区域)
def log_transform(img, c=42):
return cv2.convertScaleAbs(c * np.log1p(img.astype('float32')))
# 幂次变换(伽马校正)
def gamma_correction(img, gamma=1.5):
inv_gamma = 1.0 / gamma
table = np.array([((i / 255.0) ** inv_gamma) * 255
for i in np.arange(0, 256)]).astype("uint8")
return cv2.LUT(img, table)
直方图处理
1. 直方图均衡化
(1) 数学原理
s_k = T(r_k) = (L-1)∑_{j=0}^k p_r(r_j)
其中:
-
p_r(r_j)
:灰度级r_j出现的概率 -
L
:灰度级数(如256)
(2) 处理效果
-
输出图像直方图近似均匀分布
-
扩展动态范围
-
可能过度增强噪声
(3) OpenCV实现
equalized = cv2.equalizeHist(img)
2. 自适应直方图均衡化(CLAHE)
(1) 改进原理
-
将图像分块处理
-
限制对比度增强幅度(clip limit)
-
双线性插值消除块效应
(2) 参数说明
-
clip limit:典型值2.0-3.0
-
tile grid size:常见8x8或16x16
(3) OpenCV实现
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8)) clahe_img = clahe.apply(img)
# 直方图均衡化(全局)
def hist_equalization(img):
if len(img.shape) == 3: # 彩色图像
ycrcb = cv2.cvtColor(img, cv2.COLOR_BGR2YCrCb)
ycrcb[:,:,0] = cv2.equalizeHist(ycrcb[:,:,0])
return cv2.cvtColor(ycrcb, cv2.COLOR_YCrCb2BGR)
else: # 灰度图像
return cv2.equalizeHist(img)
# 自适应直方图均衡化(CLAHE)
def clahe_enhancement(img, clip_limit=2.0, grid_size=(8,8)):
if len(img.shape) == 3:
lab = cv2.cvtColor(img, cv2.COLOR_BGR2LAB)
l, a, b = cv2.split(lab)
clahe = cv2.createCLAHE(clipLimit=clip_limit, tileGridSize=grid_size)
l = clahe.apply(l)
lab = cv2.merge((l, a, b))
return cv2.cvtColor(lab, cv2.COLOR_LAB2BGR)
else:
clahe = cv2.createCLAHE(clipLimit=clip_limit, tileGridSize=grid_size)
return clahe.apply(img)
应用场景
1. 医学影像
-
需求:突出特定组织对比度
-
方法:分段线性变换+Gamma校正
-
示例:
# 突出肺部区域 def lung_enhance(img): # 窗宽窗位变换 window_center = -600 window_width = 1500 min_val = window_center - window_width//2 max_val = window_center + window_width//2 img = np.clip(img, min_val, max_val) img = ((img - min_val) / (max_val - min_val) * 255).astype('uint8') # Gamma校正 return gamma_correction(img, 0.6)
2. 工业检测
-
需求:增强缺陷对比度
-
方法:高对比度拉伸+锐化
-
示例:
def defect_enhance(img): # 高对比度线性拉伸 img = cv2.convertScaleAbs(img, alpha=3.0, beta=-100) # 锐化处理 kernel = np.array([[-1,-1,-1], [-1,9,-1], [-1,-1,-1]]) return cv2.filter2D(img, -1, kernel)
3. 低照度图像
-
需求:提升暗部可见性
-
方法:对数变换+CLAHE
-
示例:
def lowlight_enhance(img): # 对数变换 img_log = cv2.convertScaleAbs(42 * np.log1p(img.astype('float32'))) # CLAHE处理 clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(16,16)) return clahe.apply(img_log)
技术选型
变换类型 | 适用场景 | 优点 | 缺点 |
---|---|---|---|
线性变换 | 全局对比度/亮度调整 | 计算简单,实时性好 | 可能丢失细节 |
分段线性变换 | 突出特定灰度范围 | 灵活控制不同区域 | 需要手动设置分段点 |
对数变换 | 高动态范围图像显示 | 有效压缩高光区域 | 计算涉及浮点运算 |
Gamma校正 | 显示设备校正/非均匀增强 | 符合人眼感知特性 | 需要经验选择γ值 |
直方图均衡化 | 全局对比度增强 | 自动处理,效果明显 | 可能放大噪声 |
CLAHE | 局部对比度增强 | 保留细节,抑制噪声 | 计算复杂度较高 |
高级主题
1. 自适应Gamma校正
def adaptive_gamma(img, gamma_min=0.3, gamma_max=1.5):
# 基于局部亮度计算gamma值
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
local_mean = cv2.blur(gray, (25,25)) / 255.0
gamma_map = gamma_min + (gamma_max - gamma_min) * (1 - local_mean)
# 应用逐像素gamma校正
result = np.zeros_like(img, dtype=np.float32)
for c in range(3):
result[:,:,c] = np.power(img[:,:,c]/255.0, gamma_map) * 255
return np.clip(result, 0, 255).astype('uint8')
2. 基于Retinex的增强
def retinex_enhance(img, sigma_list=[15,80,250]):
# 多尺度Retinex算法
img = img.astype('float32') + 1.0 # 避免log(0)
retinex = np.zeros_like(img)
for sigma in sigma_list:
blurred = cv2.GaussianBlur(img, (0,0), sigma)
retinex += np.log10(img) - np.log10(blurred)
retinex = retinex / len(sigma_list)
# 归一化到[0,255]
for c in range(3):
retinex[:,:,c] = cv2.normalize(retinex[:,:,c], None, 0, 255, cv2.NORM_MINMAX)
return retinex.astype('uint8')
灰度变换作为图像处理的基础操作,其选择和应用需要结合具体场景需求。理解各类变换的数学本质和视觉效果差异,才能在实际应用中灵活组合,达到最优增强效果。
邻域运算(空间滤波)
2.1 平滑滤波
均值滤波:
-
用邻域内像素的平均值代替中心像素
-
核函数:
1/(m×n)×全1矩阵
-
简单有效但会使边缘模糊
-
适用于高斯噪声去除
高斯滤波:
-
基于二维高斯函数构建加权平均核:
G(x,y) = (1/(2πσ²))·exp(-(x²+y²)/(2σ²))
-
σ控制平滑程度,σ越大模糊效果越强
-
具有各向同性特点,边缘保留优于均值滤波
中值滤波:
-
用邻域内像素的中值代替中心像素
-
非线性滤波,对椒盐噪声特别有效
-
能较好保留边缘锐度
-
窗口尺寸通常3×3或5×5
双边滤波:
-
同时考虑空间距离和灰度相似性:
BF[I]_p = 1/W_p ∑_{q∈S} G_σs(||p-q||)G_σr(|I_p-I_q|)I_q W_p = ∑_{q∈S} G_σs(||p-q||)G_σr(|I_p-I_q|)
-
σs控制空间权重,σr控制灰度权重
-
能在平滑噪声的同时保持边缘清晰
# 均值滤波
def mean_filter(img, kernel_size=3):
return cv2.blur(img, (kernel_size, kernel_size))
# 高斯滤波
def gaussian_filter(img, kernel_size=3, sigma=1.0):
return cv2.GaussianBlur(img, (kernel_size, kernel_size), sigma)
# 中值滤波(去除椒盐噪声)
def median_filter(img, kernel_size=3):
return cv2.medianBlur(img, kernel_size)
# 双边滤波(保边去噪)
def bilateral_filter(img, d=9, sigma_color=75, sigma_space=75):
return cv2.bilateralFilter(img, d, sigma_color, sigma_space)
2.2 锐化滤波
Laplacian锐化:
-
基于二阶微分算子:
∇²f = ∂²f/∂x² + ∂²f/∂y² ≈ [f(x+1,y)+f(x-1,y)+f(x,y+1)+f(x,y-1)]-4f(x,y)
-
常用核:[[0,1,0],[1,-4,1],[0,1,0]]或[[1,1,1],[1,-8,1],[1,1,1]]
-
增强公式:
g(x,y)=f(x,y)-k·∇²f(x,y)
(k控制锐化强度)
Unsharp Masking:
-
对原图进行高斯模糊得到低频成分
-
原图减去低频成分得到高频成分
-
将加权的高频成分加回原图:
g(x,y) = f(x,y) + k·(f(x,y)-f̄(x,y))
-
阈值参数可避免增强平坦区域的噪声
Sobel边缘增强:
-
用Sobel算子计算水平和垂直梯度:
Gx = [[-1,0,1],[-2,0,2],[-1,0,1]] Gy = [[-1,-2,-1],[0,0,0],[1,2,1]]
-
计算梯度幅值:
G = √(Gx² + Gy²)
-
将梯度图像按比例加回原图
# Laplacian锐化
def laplacian_sharpen(img, k=1.0):
laplacian = cv2.Laplacian(img, cv2.CV_32F)
sharpened = img - k * laplacian
return np.clip(sharpened, 0, 255).astype('uint8')
# Unsharp Masking(反锐化掩模)
def unsharp_mask(img, kernel_size=(5,5), sigma=1.0, amount=1.0, threshold=0):
blurred = cv2.GaussianBlur(img, kernel_size, sigma)
sharpened = float(amount + 1) * img - float(amount) * blurred
sharpened = np.maximum(sharpened, np.zeros(sharpened.shape))
sharpened = np.minimum(sharpened, 255 * np.ones(sharpened.shape))
sharpened = sharpened.round().astype(np.uint8)
if threshold > 0:
low_contrast_mask = abs(img - blurred) < threshold
np.copyto(sharpened, img, where=low_contrast_mask)
return sharpened
# Sobel边缘增强
def sobel_enhance(img, ksize=3, scale=1.0):
sobelx = cv2.Sobel(img, cv2.CV_32F, 1, 0, ksize=ksize)
sobely = cv2.Sobel(img, cv2.CV_32F, 0, 1, ksize=ksize)
magnitude = cv2.magnitude(sobelx, sobely)
enhanced = cv2.addWeighted(img, 1.0, magnitude, scale, 0)
return np.clip(enhanced, 0, 255).astype('uint8')
频率域图像增强
1. 傅里叶变换增强
基本流程:
-
对图像进行二维离散傅里叶变换(DFT)
-
将低频成分(图像中心)移到频谱中心
-
设计频域滤波器H(u,v)
-
应用滤波器:G(u,v) = F(u,v)·H(u,v)
-
反变换回空间域
高通滤波:
-
理想高通滤波器:
H(u,v) = 0 if D(u,v) ≤ D0 1 if D(u,v) > D0
-
巴特沃斯高通滤波器:
H(u,v) = 1/[1 + (D0/D(u,v))^(2n)]
-
高斯高通滤波器:
H(u,v) = 1 - exp(-D²(u,v)/(2D0²))
-
其中D(u,v)是点(u,v)到中心的距离,D0是截止频率
def frequency_domain_enhancement(img, radius=30, boost=1.5):
# 转换为灰度
if len(img.shape) == 3:
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 傅里叶变换
dft = cv2.dft(np.float32(img), flags=cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)
# 创建高通滤波器
rows, cols = img.shape
crow, ccol = rows//2, cols//2
mask = np.ones((rows, cols, 2), np.uint8)
cv2.circle(mask, (ccol, crow), radius, (0,0), -1)
# 应用滤波器并增强高频
fshift = dft_shift * (1 + boost * mask)
# 逆变换
f_ishift = np.fft.ifftshift(fshift)
img_back = cv2.idft(f_ishift)
img_back = cv2.magnitude(img_back[:,:,0], img_back[:,:,1])
# 归一化
cv2.normalize(img_back, img_back, 0, 255, cv2.NORM_MINMAX)
return img_back.astype('uint8')
2. 同态滤波(同时增强暗部和抑制亮部)
成像模型:
-
将图像视为照度分量i(x,y)和反射分量r(x,y)的乘积:
f(x,y) = i(x,y)·r(x,y)
-
照度分量:低频,缓慢变化
-
反射分量:高频,快速变化(包含细节)
处理步骤:
-
取对数:
ln f(x,y) = ln i(x,y) + ln r(x,y)
-
傅里叶变换:
F{ln f(x,y)} = F{ln i(x,y)} + F{ln r(x,y)}
-
频域滤波:
H(u,v)·F{ln f(x,y)}
-
反傅里叶变换
-
取指数得到增强后图像
滤波器设计:
-
典型传递函数:
H(u,v) = (γH - γL)[1 - exp(-c·D²(u,v)/D0²)] + γL
-
γL < 1压缩低频(照度),γH > 1增强高频(反射)
-
c控制过渡带陡度
def homomorphic_filter(img, gamma_l=0.5, gamma_h=2.0, c=1, d0=30):
if len(img.shape) == 3:
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 对数变换
img_log = np.log1p(img.astype('float32'))
# 傅里叶变换
dft = cv2.dft(img_log, flags=cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)
# 创建同态滤波器
rows, cols = img.shape
crow, ccol = rows//2, cols//2
H = np.zeros((rows, cols, 2), dtype=np.float32)
for u in range(rows):
for v in range(cols):
d = np.sqrt((u - crow)**2 + (v - ccol)**2)
H[u,v] = (gamma_h - gamma_l) * (1 - np.exp(-c * (d**2 / d0**2))) + gamma_l
# 应用滤波器
filtered = dft_shift * H
# 逆变换
f_ishift = np.fft.ifftshift(filtered)
img_back = cv2.idft(f_ishift)
img_back = cv2.magnitude(img_back[:,:,0], img_back[:,:,1])
# 指数变换
img_exp = np.expm1(img_back)
cv2.normalize(img_exp, img_exp, 0, 255, cv2.NORM_MINMAX)
return img_exp.astype('uint8')
彩色图像增强
1. 色彩空间转换增强
HSV空间增强:
-
在HSV空间处理各分量:
-
色调(H):通常保持不变
-
饱和度(S):增强可提高色彩鲜艳度
-
明度(V):可应用灰度图像增强方法
-
-
适合单独调整色彩饱和度和亮度
LAB空间增强:
-
L分量表示亮度,与颜色信息分离
-
A分量(绿-红轴)和B分量(蓝-黄轴)
-
对L分量增强不会影响颜色信息
-
特别适合需要保持色彩真实性的增强
def color_space_enhancement(img):
# 转换到HSV空间增强饱和度
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
hsv[:,:,1] = cv2.equalizeHist(hsv[:,:,1])
enhanced = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
# 转换到LAB空间增强亮度
lab = cv2.cvtColor(enhanced, cv2.COLOR_BGR2LAB)
lab[:,:,0] = clahe_enhancement(lab[:,:,0])
enhanced = cv2.cvtColor(lab, cv2.COLOR_LAB2BGR)
return enhanced
2. 白平衡算法
灰度世界假设:
-
认为整幅图像的平均反射是无色的(R=G=B)
-
计算各通道均值,调整至相等
-
数学表达:
R' = R * k/avgR G' = G * k/avgG B' = B * k/avgB
其中k通常取(avgR+avgG+avgB)/3
完美反射体假设:
-
寻找图像中最亮的像素点(假设为白色)
-
以这些点的RGB均值作为白点参考
-
对各通道进行比例缩放
-
对存在镜面反射的场景效果较好
def gray_world_white_balance(img):
# 灰度世界假设
b, g, r = cv2.split(img)
avg_b = np.mean(b)
avg_g = np.mean(g)
avg_r = np.mean(r)
# 计算增益
avg_gray = (avg_b + avg_g + avg_r) / 3
scale_b = avg_gray / avg_b
scale_g = avg_gray / avg_g
scale_r = avg_gray / avg_r
# 应用增益
b = cv2.convertScaleAbs(b, alpha=scale_b)
g = cv2.convertScaleAbs(g, alpha=scale_g)
r = cv2.convertScaleAbs(r, alpha=scale_r)
return cv2.merge([b, g, r])
def perfect_reflection_white_balance(img, percentage=0.05):
# 完美反射假设
b, g, r = cv2.split(img)
def channel_balance(channel):
# 计算直方图
hist, _ = np.histogram(channel, 256, [0, 256])
# 找到最亮的percentage%像素
sum_ = 0
threshold = 0
total_pixels = img.shape[0] * img.shape[1]
for i in range(255, 0, -1):
sum_ += hist[i]
if sum_ > total_pixels * percentage:
threshold = i
break
# 线性拉伸
channel = np.clip(channel * (255.0 / threshold), 0, 255)
return channel.astype('uint8')
b = channel_balance(b)
g = channel_balance(g)
r = channel_balance(r)
return cv2.merge([b, g, r])
基于深度学习的图像增强
1. CNN-based增强
常见网络结构:
-
编码器-解码器结构(如U-Net)
-
残差学习:学习残差映射H(x)=F(x)+x
-
注意力机制:聚焦重要区域
-
多尺度处理:捕获不同粒度特征
损失函数:
-
像素级损失:L1/L2损失
-
感知损失:基于VGG等网络的特征匹配
-
对抗损失:GAN框架中的判别器损失
-
色彩一致性损失:保持色彩自然性
2. GAN-based增强
基本框架:
-
生成器G:学习从低质量到高质量的映射
-
判别器D:区分生成图像和真实高质量图像
-
目标函数:
min_G max_D E[logD(x)] + E[log(1-D(G(z)))]
先进变体:
-
CycleGAN:无需成对数据的域转换
-
添加循环一致性损失:
||G(F(x))-x|| + ||F(G(y))-y||
-
-
ESRGAN:增强型超分辨率GAN
-
使用RRDB(残差中的残差密集块)
-
引入感知损失和相对判别器
-
1. 使用预训练模型
import torch
import torchvision.transforms as transforms
from PIL import Image
def enhance_with_pretrained(img_path, model_path):
# 加载图像
img = Image.open(img_path).convert('RGB')
# 预处理
transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
img_t = transform(img).unsqueeze(0)
# 加载模型
model = torch.load(model_path)
model.eval()
# 推理
with torch.no_grad():
enhanced_t = model(img_t)
# 后处理
enhanced_t = enhanced_t.squeeze(0).cpu()
enhanced_img = transforms.ToPILImage()(enhanced_t)
return enhanced_img
2. 基于GAN的图像增强
def gan_enhancement(img_path, generator_path):
# 这里以CycleGAN为例
from cyclegan import Generator # 假设有CycleGAN的实现
# 初始化生成器
generator = Generator()
generator.load_state_dict(torch.load(generator_path))
generator.eval()
# 加载并预处理图像
img = Image.open(img_path).convert('RGB')
transform = transforms.Compose([
transforms.Resize(256),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
img_t = transform(img).unsqueeze(0)
# 生成增强图像
with torch.no_grad():
enhanced_t = generator(img_t)
# 反归一化并转换为PIL图像
enhanced_t = enhanced_t.squeeze(0).cpu() * 0.5 + 0.5
enhanced_img = transforms.ToPILImage()(enhanced_t)
return enhanced_img
图像增强评估指标
1. 客观评价指标
PSNR(峰值信噪比):
PSNR = 10·log10(MAX²/MSE) MSE = 1/(mn)∑[I(i,j)-K(i,j)]²
-
MAX为最大像素值(如255)
-
计算简单但对人眼感知匹配不佳
SSIM(结构相似性):
-
从亮度、对比度、结构三方面比较:
SSIM(x,y) = [l(x,y)]^α · [c(x,y)]^β · [s(x,y)]^γ l(x,y) = (2μxμy + C1)/(μx² + μy² + C1) c(x,y) = (2σxσy + C2)/(σx² + σy² + C2) s(x,y) = (σxy + C3)/(σxσy + C3)
-
更符合人类视觉系统特性
def calculate_psnr(img1, img2):
# 峰值信噪比
mse = np.mean((img1 - img2) ** 2)
if mse == 0:
return float('inf')
max_pixel = 255.0
psnr = 20 * np.log10(max_pixel / np.sqrt(mse))
return psnr
def calculate_ssim(img1, img2):
# 结构相似性
from skimage.metrics import structural_similarity as ssim
if len(img1.shape) == 3:
return ssim(img1, img2, multichannel=True)
else:
return ssim(img1, img2)
2. 无参考图像质量评估
BRISQUE:
-
提取 MSCN(均值减除对比度归一化)系数
-
计算 MSCN 系数的广义高斯分布参数
-
在图像块上计算这些特征
-
使用SVR模型预测质量分数
NIQE:
-
在自然图像库上提取特征(MSCN参数)
-
构建多元高斯(MVG)模型作为"自然"参考
-
计算测试图像特征与参考MVG的距离
-
距离越大表示质量越差
def calculate_brisque(img):
# 盲/无参考图像空间质量评估器
import brisque # 需要安装brisque包
return brisque.score(img)
def calculate_niqe(img):
# 自然图像质量评估
from skimage.metrics import niqe
return niqe(img)
实际应用
-
工业检测场景:
-
优先考虑CLAHE增强对比度
-
使用锐化突出缺陷边缘
-
考虑同态滤波处理不均匀光照
-
-
医学图像增强:
-
使用自适应直方图均衡化
-
考虑多尺度Retinex增强
-
谨慎使用锐化避免噪声放大
-
-
低光照增强:
-
尝试基于深度学习的低光增强方法
-
使用gamma校正调整亮度
-
考虑噪声抑制与增强的平衡
-
-
遥感图像处理:
-
多波段分别增强后融合
-
使用直方图匹配保持一致性
-
考虑频域滤波去除周期性噪声
-
图像增强技术需要根据具体应用场景和图像特性选择合适的方法组合,通常需要多次实验比较不同方法的实际效果。