在掌握了机器学习算法后,接下来就需要对算法进行选择,在不同的问题下选择最合适的算法和模型进行处理。要知道在碰到不同的问题时应当走哪条解决方案,选择对了尝试的方向,才能够尽快的达到最优的解同时保证最优的性能。这篇文章就简要介绍一下碰到常规问题时如何解决,这些都是经验结论,在应对一些基础问题时一般都可以起到一定作用。
一、写在前面
首先需要了解大体上应当如何处理这类问题。当我们在预测时碰到问题,得到了较大的误差时,往往可以采用下面的方法:
- 增加训练样本
- 减小特征数量
- 尝试其它额外的特征
- 尝试特征的多项式组合
- 调整惩罚系数
- 根据样本学习得到Θ,同时最小化Jtrain(Θ) ;
- 计算测试集的误差Jt