MCM箱模型的运行及结果分析,MCM建模技巧与参数设置、EKMA曲线绘制、大气O3来源解析

本文介绍了大气中臭氧的形成原理、MCM和Atchem2模型的应用,涉及Linux系统安装、模型构建、数据输入、运行分析及O3生成途径的敏感性评估。通过实例和案例,深入探讨了EKMA曲线在解析大气O3来源中的关键作用,以及与WRF、CMAQ等大气科学模型的关联。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一、大气中O3形成知识基础、MCM和Atchem 2原理及Linux系统安装

二、MCM建模、数据输入、模型运行及结果输出

三、O3形成途径、生成潜势及其敏感性分析

EKMA曲线及大气O3来源解析

更多应用


臭氧污染不仅对气候有重要影响,而且对人体健康、植物生长均有严重损害。为了高效、精准地治理区域大气臭氧污染,需要了解臭氧生成的主要途径及其前体物。OBM箱模型可用于模拟光化学污染的发生、演变过程,研究臭氧的生成机制和进行敏感性分析,探讨前体物的排放对光化学污染的影响。箱模型通常由化学机理、物理过程、初始条件、输入和输出模块构成,化学机理是其核心部分。

MCM (Master Chemical Mechanism)包含了约6700个有机物,大约17000个反应,可以详细描述大气气相有机物的化学过程,被广泛用于大气科学研究领域。

掌握大气臭氧生成的基础知识、MCM箱模型的建立以及对O3生成的控制前体物进行判断的技术,采用“理论讲解+案例实战+动手实操+讨论互动”相结合的方式,抽丝剥茧、深入浅出地讲解大气臭氧生成的基础知识及EKMA曲线在应用中需要掌握的经验和技巧。

一、大气中O3形成知识基础、MCM和Atchem 2原理及Linux系统安装

1.大气中O3形成的原理知识讲解

图片

2.MCM原理及基本流程讲解
3.Atchem 2 讲解及下载安装
4.Linux系统安装
5.Atchem 2 运行需要的其他工具
A、Fortran;B、Python;C、make, cmake

二、MCM建模、数据输入、模型运行及结果输出

1.MCM箱模型建立
1)化学机理
A、Facsimile 格式;B、RO2;C、MCM 的提取
2)模型参数的设定
3)环境变量
A、温度;B、大气压;C、相对湿度;D、水;E、太阳高度角;
F、边界层高度;G、气溶胶表面积;H、扩散速率;I、JFAC;J、Roof
4)光解速率
A、常数光解速率;B、限制光解速率;C计算光解速率;D、JFAC计算
5)各种config. 文件

2.MCM箱模型运行

3.MCM模型运行结果分析
案例:对MCM箱模型运行结果进行分析

三、O3形成途径、生成潜势及其敏感性分析

1.O3 形成途径

图片

案例:不同反应途径对O3形成的贡献

2.O3敏感性分析Ⅰ:相对增量反应性方法(RIR)
案例:通过RIR的计算,判断O3的主要来源

3.O3敏感性分析Ⅱ:EKMA曲线绘制
1)O3 等值线数据的获得
2)EKMA曲线绘制
案例:通过EKMA曲线的绘制,判断O3的主要来源

图片

4.O3生成潜势
案例:VOCS O3生成潜势的计算
注:请提前自备电脑及安装所需软件


EKMA曲线及大气O3来源解析

为了高效、精准地治理区域大气臭氧污染,首先需要了解导致臭氧生成的主要前体物。因此,EKMA曲线成为弄清大气臭氧生成主要控制前体物的关键技术。帮助广大科研人员更加系统地学习大气臭氧生成和EKMA曲线的基础理论知识及相应技术,帮助学员掌握大气臭氧生成的基础知识和通过EKMA曲线对其生成的控制前体物进行判断的技术。

大气中O3形成的主要途径、EKMA曲线及O3来源解析
1、大气中O3形成的主要途径 

图片

2、OZIPR模型输入文件的准备
3、OZIPR模型运行
4、EKMA曲线的绘制
5、O3来源解析

注:请提前自备电脑及安装所需软件


更多应用

包含:WRF模式、NCL、CMAQ空气质量模式、AERMOD模型、MPAS模式、PMF源解析、Calpuff模型、FLEXPART模式、SMOKE模式、VOCs排放量核算、大气臭氧来源解析、CAMx、EKMA曲线、MCM箱模型、WRF-Hydro、WRF-Chem、WRF-UCM、WRF-SOLAR、WRFDA、Python气象海洋、CMIP6数据处理等...

大气科学领域必备模型软件丨WRF、CMAQ、WRF-Chem、WRF-Hydro、WRF DA、PMF、MCM、CAMx、SMOKE、Calpuff、FLEXPART、WRF-UCM、CMIP6等_megan模型-CSDN博客文章浏览阅读1.2k次。采用“理论讲解+案例实战+动手实操+讨论互动”相结合的方式,抽丝剥茧、深入浅出地讲解大气环境相关实用模型!_megan模型https://blog.csdn.net/WangYan2022/article/details/132106019?spm=1001.2014.3001.5502★点 击 关 注,获取海量教程和资源

### OBM模型概述 OBM(Object-Based Modeling)是一种基于对象的建模技术,广泛应用于图像处理、地理信息系统(GIS)、生态学等领域。该模型的核心思想是以空间中的对象为基础进行分类和分析,而不是传统的像素级操作。这种方法可以有效减少噪声干扰并提高特征提取精度。 在机器学习领域,OBM通常其他算法结合使用,例如支持向量机(SVM)、随机森林(Random Forests),或者深度学习框架如TensorFlow或PyTorch[^3]。以下是关于OBM模型的一些基础知识及其机器学习结合的应用: #### 数据预处理阶段 在应用OBM模型前,需要对原始数据进行分割以形成独立的对象单元。这一过程可以通过多种方法实现,比如分水岭变换、区域生长法等。这些方法的目标是将具有相似特性的像素聚集成单个对象,从而降低后续计算复杂度[^1]。 #### 特征提取选择 一旦完成了对象划分,则需从每个对象中抽取有意义的信息作为输入变量传递给机器学习算法。常见的特征包括颜色直方图、纹理特性、形状参数以及位置关系等等。对于某些特定应用场景还可能涉及更复杂的指标体系构建工作[^2]。 #### 训练验证 利用已标注样本集训练选定的学习器完成模式识别任务;之后再采用交叉验证等方式评估其泛化性能表现良好否。在此过程中可能会涉及到超参调节优化等问题解决策略探讨环节[^4]。 ```python from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier import numpy as np # 假设X为特征矩阵,y为目标标签数组 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) clf = RandomForestClassifier(n_estimators=100) clf.fit(X_train, y_train) accuracy = clf.score(X_test, y_test) print(f"Accuracy: {accuracy}") ``` 此代码片段展示了如何使用随机森林分类器来训练一个简单的监督学习模型,并对其进行测试以获得准确性分数。 ### 学习资源推荐 针对希望深入研究OBM模型及相关机器学习技术的人士,下面列举了一些有价值的参考资料: - **书籍**:《Geospatial Analysis with Python》涵盖了大量有关于地理空间数据分析的内容,其中也包含了部分章节专门讨论了基于对象的空间建模理论基础。 - **在线课程平台**: Coursera上的“Machine Learning”由Andrew Ng教授讲授,虽然不直接提及OBM概念,但对于理解通用ML原理非常有帮助。 - **学术论文数据库**: IEEE Xplore Digital Library 和 ScienceDirect 提供了许多高质量的技术文章,可以帮助读者获取最新研究成果和技术进展动态信息。 - **开源项目仓库**: GitHub上有不少专注于遥感影像处理方面的公共存储库可供参考借鉴,像EO-Learning就是这样一个致力于地球观测大数据挖掘方向努力探索实践的好例子之一[^5]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值