合成孔径雷达干涉测量InSAR技术流程(星载/地基系统+DEM重建+DInSAR形变监测+时序分析)等

合成孔径雷达干涉测量(Interferometric Synthetic Aperture Radar, InSAR)技术作为一种新兴的主动式微波遥感技术,凭借其可以穿过大气层,全天时、全天候获取监测目标的形变信息等特性,已在地表形变监测、DEM生成、滑坡、火山活动、冰川运动、人工建筑物形变信息提取等多种领域展开了成功应用。

通过典型案例,熟练掌握InSAR数据处理(包括InSAR高程测量、DInSAR形变提取以及时序InSAR等)的流程与方法,为测绘、遥感、地球物理、地质工程、环境工程、土木工程、灾害监测评估、资源勘探以及地理信息工程等相关领域的科研与工程实践服务。

专题一 InSAR技术应用现状分析及其发展

星载与地基InSAR概述

SAR系统,星载SAR卫星与地基InSAR系统发展

InSAR技术的应用现状分析

专题二 InSAR原理、技术方法

InSAR成像原理

InSAR成像特性

InSAR技术

1)InSAR高程测量技术2)DInSAR形变监测技术3)时序InSAR技术

InSAR的基本误差源

1)大气效应误差2)地形相位误差3)去相干4)轨道误差

专题三 数据处理环境建立与软件

ENVI/SARscape安装(硬件环境要求:内存 8G 及以上、硬盘空间 500G 及以上、处理器2GHz 及以上;操作系统要求:Windows 7/8/10/Server 操作系统)

掌握ENVI软件相关功能

掌握SARscape软件相关功能

专题四 SAR影像数据获取、DEM数据获取 InSAR数据前处理

SAR影像数据获取

Sentinel-1卫星SAR影像数据下载

精密轨道星历参数下载

DEM数据获取

ENVI/SARscape系统设置

SARscape下数据导入,【示例】:以Envisat ASAR数据导入为例

专题五 InSAR地形三维重建

InSAR生成DEM数据处理

1)数据读取及预处理2)影像配准与重采样3)干涉图生成4)去除平地效应5)相位解缠6)地理编码

【示例】:展示采用意大利高分辨率COSMO SkyMed CSKS2 SLC数据(2011年)提取北京地区的DEM 

【算例】:采用覆盖Bam地区的Envisat ASAR数据(2003年),基于InSAR技术获取该地区地震前的三维地形(DEM)

掌握采用SARscape生成DEM

专题六 DInSAR形变信息提取

DInSAR提取形变数据处理

1)DEM数据准备2)轨道数据准备3)SAR数据准备4)二轨法差分处理5)三轨法差分处理6)结果输出与分析7)DEM数据准备8)轨道数据准备9)SAR数据准备10)二轨法差分处理11)三轨法差分处理12)结果输出与分析

【算例1】:利用覆盖广西玉林地区的哨兵-1A SAR数据(2019年),采用二轨法差DInSAR获取该地区地震前后的地表地形形变信息

【算例2】:利用Bam地区的Envisat ASAR数据(2003、2004年),采用三轨法差DInSAR获取Bam地震前后的地表形变信息

掌握采用SARscape提取地表形变信息

专题七 时序InSAR技术形变速率与形变时间序列信息获取

PSInSAR数据处理方法

SBASInSAR数据处理方法

时序SAR影像数据准备

精密轨道数据准备 

DEM数据准备

基于Sentinel-1A 的PSInSAR数据处理

1)系统参数设置2)SAR影像导入3)影像裁剪4)主影像选取与配准5)差分干涉处理6)PS点选取7)相关噪声相位估计与去除8)形变速率与形变时序获取9)结果展示与误差分析

【算例】:利用覆盖北京地区的Sentinel-1A  SAR影像(2018年-2020年),采用PSInSAR技术获取北京地区的地表沉降速率与沉降时间序列信息

【示例】:利用覆盖武汉地区的Sentinel-1A  SAR影像(2019年-2020年),采用SBASInSAR技术获取武汉地区的地表沉降时空特征信息

掌握采用PSInSAR/SBASInSAR提取形变时序信息

专题八 星地InSAR技术监测案例

基于MTInSAR与GRACE的北京地区地表沉降监测分析

TSInSAR上海地区地表沉降反演分析

SBASInSAR天津地区地表沉降时空演变分析

PSInSAR深圳填海区地铁沿线监测

GB-InSAR滑坡稳定性监测与预警

地基InSAR技术高铁桥梁安全监测

GB-RAR超高层建筑物动态特性监测


★ 点 击 下 方 关 注,获取海量教程和资源!

↓↓↓

资源下载链接为: https://pan.quark.cn/s/9e7ef05254f8 在苹果的生态系统中,IAP(应用内购买)是苹果应用商店(App Store)中应用开发者常采用的一种盈利模式,允许用户在应用内直接购买虚拟商品或服务。苹果为开发者提供了一份详细的人民币(CNY)IAP定价表,这份定价表具有以下特点: 价格分级:定价表由多个价格等级组成,开发者可根据虚拟商品的价值选择相应等级,等级越高,价格越高。例如,低等级可能对应基础功能解锁,高等级则对应高级服务或大量虚拟道具。 税收与分成:苹果会从应用内购买金额中抽取30%作为服务费或佣金,这是苹果生态的固定规则。不过,开发者实际到手的收入会因不同国家和地区的税收政策而有所变化,但定价表中的价格等级本身是固定的,便于开发者统一管理。 多级定价策略:通过设置不同价格等级,开发者可以根据商品或服务的类型与价值进行合理定价,以满足不同消费能力的用户需求,从而最大化应用的总收入。例如,一款游戏可以通过设置不同等级的虚拟货币包,吸引不同付费意愿的玩家。 特殊等级:除了标准等级外,定价表还包含备用等级和特殊等级(如备用等级A、备用等级B等),这些等级可能是为应对特殊情况或促销活动而设置的额外价格点,为开发者提供了更灵活的定价选择。 苹果IAP定价表是开发者设计应用内购机制的重要参考。它不仅为开发者提供了标准的收入分成模型,还允许开发者根据产品特性设定价格等级,以适应市场和满足不同用户需求。同时,开发者在使用定价表时,还需严格遵守苹果的《App Store审查指南》,包括30%的分成政策、使用苹果支付接口、提供清晰的产品描述和定价信息等。苹果对应用内交易有严格规定,以确保交易的透明性和安全性。总之,苹果IAP定价表是开发者在应用内购设计中不可或缺的工具,但开发者也需密切关注苹果政策变化,以确保应用的合规运营和收益最大化。
资源下载链接为: https://pan.quark.cn/s/032795b7064d 重要更新:models 已更新为由主办方提供图片制作的图像识别板。若使用过旧版本 ucar_sim 包的仿真,需重新执行使用方法中的步骤 3。world 文件夹下的 arena-1、arena-2、arena-3 分别对应三套仿真比赛场景,图像识别板位置参考赛前会议抽取的三套摆放位置,但图像内容组合未参考比赛题库组合(详见抽取结果.pdf 及 img-folder)。 图像使用说明:仿真场地中,采用与终点地块相同图样的地块标记随机图像板和固定图像板位置,详细坐标区域信息需参考抽取结果.pdf 和 img-folder/map.png。 使用方法:将 ucar_sim 包复制到工作空间 src 目录;先执行 catkin_make 编译,再运行 source ~/.bashrc 或 devel/setup.bash;为防止启动时编码报错,需修改 python2 默认编码,解决方案:打开终端输入指令(使用 anaconda 需定位虚拟环境),找到 setencoding () 函数,将第一个 encoding 改为 "utf-8",重启电脑;将 ucar_sim 包中 models 文件夹内所有内容复制到.gazebo/models 下(.gazebo 为隐藏文件,若无 models 文件夹需自行创建),前提:未打开过 gazebo 的用户需先在终端输入 gazebo 运行一次。 运行比赛仿真时,若终端出现 “Gazebo [Err] [REST.cc:205] Error in REST request”,解决方法:打开终端,用 url: https://api.ignitionrobotics.org替换原 url: https://api.ignitionfuel.org 。 Pac
<think>好的,我现在要回答用户关于如何使用InSAR技术生成高精度DEM的问题。首先,我需要回忆InSAR的基本原理和相关技术。用户提到的参考资料中提到了相位解缠、DInSAR时序InSAR方法(如PS-InSAR、SBAS-InSAR)等,这些都可能与生成DEM有关。 首先,InSAR生成DEM的核心步骤通常包括数据获取、干涉图生成、相位解缠、地理编码和精度验证。需要确保用户了解每个步骤的关键点。例如,数据需要满足一定的基线要求,否则会影响干涉效果。这点在参考资料中提到过,可能需要引用。 接下来,相位解缠是重要的一环,因为解缠的准确性直接影响到DEM的质量。这里需要提到常用的算法,比如最小费用流(MCF)或SNAPHU,这些工具可能被使用。同时,参考资料中的引用[1]提到了利用InSAR相位解缠法和立体雷达测绘技术生成精细DEM,这里需要引用该文献。 然后,用户可能关心具体的工具和软件。常见的工具包括ISCE、GMTSAR、SNAP等,这些开源工具支持处理SAR数据生成DEM。需要详细说明每个工具的特点和使用场景,比如ISCE适合科研,SNAP有图形界面适合初学者。 此外,参考资料[3]提到时序InSAR技术如PS-InSAR和SBAS-InSAR,虽然主要用于形变监测,但某些情况下也可能辅助DEM生成,尤其是在去除大气误差和提高精度方面。这里需要指出,虽然时序方法主要针对形变,但其中的相位校正技术可能提升DEM的精度,因此可以提及。 还需要强调影响DEM精度的因素,如基线长度、相位噪声、大气延迟等。参考资料[2]讨论了DEM精度对DInSAR结果的影响,反过来,生成高精度DEM也需要控制这些因素,比如使用短基线数据减少去相干,或者利用外部气象数据校正大气效应。 最后,应用案例和验证方法也很重要。比如使用GPS或LiDAR数据验证InSAR生成的DEM,确保其准确性。同时,电力行业的应用案例(引用[3])说明InSAR技术的实际价值,可以举例说明。 在整理这些点时,要确保按照系统指令正确使用LaTeX格式,例如变量和公式用$...$,独立公式用$$...$$。同时,生成的相关问题需要与主题紧密相关,帮助用户进一步探索。 现在,需要检查是否有遗漏的关键步骤或工具,以及是否正确引用了提供的参考资料。例如,引用[1]明确提到相位解缠和立体雷达测绘的结合,这应该在方法部分提到。引用[2]关于DEM精度的影响因素,应在讨论精度控制时引用。引用[3]中的时序方法虽然主要针对形变,但其中的技术可能对DEM有帮助,需要适当关联。 总结来说,回答的结构应该是:原理概述、关键步骤、常用工具、精度控制方法、应用案例,最后生成相关问题。确保每个部分都有对应的引用支持,并正确使用LaTeX格式。</think>使用合成孔径雷达干涉测量InSAR)生成高精度数字高程模型(DEM)的核心方法可分为以下步骤: ### 1. **InSAR生成DEM的基本原理** InSAR通过两幅SAR图像的相位差提取高程信息,其数学关系可表示为: $$ \Delta \phi = \frac{4\pi}{\lambda} \cdot \frac{B_\perp \cdot h}{R \cdot \sin\theta} $$ 其中$\Delta \phi$为相位差,$B_\perp$为垂直基线,$h$为高程,$R$为斜距,$\theta$为入射角[^1]。 ### 2. **关键步骤与工具** - **数据获取** 需选择同一区域的SAR图像对(如Sentinel-1数据),要求垂直基线$B_\perp < 300$米以保持相干性[^2]。 - **干涉图生成** 使用ISCE、GMTSAR或SNAP等工具进行配准、干涉处理: ```python # ISCE流程示例 from isceobj import Sensor sensor = Sensor.create('SENTINEL1') sensor.configure() ``` - **相位解缠** 采用SNAPHU或MCF算法解决$2\pi$模糊问题,例如: $$ \phi_{\text{unwrapped}} = \text{unwrap}(\phi_{\text{wrapped}}) $$ 此步骤直接影响DEM精度。 - **地理编码与校正** 将斜距坐标系转换为地理坐标系,并利用地面控制点(GCP)或外部DEM(如SRTM)消除系统误差。 ### 3. **提高精度的技术** - **短基线干涉DInSAR)**:减少时间去相干影响[^3]。 - **时序InSAR辅助**:如PS-InSAR可分离形变信号与高程误差,提升DEM可靠性[^3]。 - **大气校正**:使用MERRA-2气象数据或GNSS水汽数据消除相位延迟。 ### 4. **常用工具对比** | 工具 | 特点 | 适用场景 | |-----------|-------------------------------|------------------| | **ISCE** | 高精度、命令行操作 | 科研与工程 | | **SNAP** | 图形界面、自动化流程 | 初学者/快速处理 | | **DORIS** | 开源、支持多平台 | 教育研究 | ### 5. **精度验证方法** - **外部数据对比**:与LiDAR或实测GPS高程数据对比,要求均方根误差(RMSE)<5米。 - **交叉验证**:使用不同SAR数据源(如ALOS-2与TerraSAR-X)生成DEM并比较。 ### 6. **应用案例** 电力行业通过InSAR DEM监测输电线路周边地形稳定性,精度可达亚米级,支持灾害预警[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值