最短Hamilton路径

本文介绍了如何使用动态规划解决无向图中最短哈密顿路径的问题,包括算法原理、流程及C++代码实现。通过初始化dp数组,设置状态转移方程,并进行回溯以找出最短路径。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最短Hamilton路径

在图论中,哈密顿路径是指在一个无向图中,经过所有顶点恰好一次且仅一次的路径。在这个问题中,我们将探讨如何在C++中找到给定图中的最短Hamilton路径。

原理

哈密顿路径问题可以通过动态规划算法求解。动态规划的基本思想是将原问题分解为子问题,然后从最小的子问题开始逐步解决,最终得到原问题的解。

对于一个有n个顶点的无向图G(V, E),我们可以使用一个二维数组dp[i][j]来表示从顶点i到顶点j的最短Hamilton路径长度。状态转移方程如下:

dp[i][j]=min(dp[k][j]+weight(i,k)+weight(k,j)) dp[i][j] = min(dp[k][j] + weight(i, k) + weight(k, j)) dp[i][j]=min(dp[k][j]+weight(i,k)+weight(k,j))
其中,weight(i, k)表示从顶点i到顶点k的边的权重。

算法流程

  1. 初始化dp数组的所有元素为无穷大(表示不可达)。
  2. 将起点和终点之间的距离设为0。
  3. 对于每个顶点i,遍历其所有邻居k,更新dp[i][k]的值。
  4. 从终点开始,逆序回溯dp数组,记录下每一步的路径信息。
  5. 最后,输出最短Hamilton路径。

C++代码实现

下面是一个使用C++实现的最短Hamilton路径算法示例:

// 最短Hamilton路径
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值