darknet-yolov4笔记

本文档详细介绍了如何使用darknet环境训练和测试yolov4模型。内容涵盖cuda和cudnn的安装,数据集的VOC格式处理,.data和.names文件的创建,权重下载,以及训练和测试的具体步骤。训练时需注意cfg配置文件的设置,测试阶段可进行单张和批量图像的检测。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

准备darknet运行环境

  1. cuda
  2. cudnn,下载时注意与cuda版本对应
  3. opencv,此项选择下载,建议安装

数据集准备

  1. 图片
  2. 标签xml文件
  3. 将上一步中的数据集处理成voc格式,即文件夹位置存放方式文件内容

训练前的其他处理

  1. .data文件以及 .names文件
  2. 权重下载,COCO数据集对应权重为yolov4.weights,ImageNet预训练模型为yolov4.conv.137
  3. cfg文件yolo层前后根据自己数据集类别数修改参数

开始训练

确保cfg中batch以及subdivisions为大于1且2的次方,cfg配置文件信息参考https://blog.csdn.net/czksnk/article/details/100692881

./darknet detector train data/voc.data cfg/yolov4-voc.cfg backup/yolov4.conv.137 -map

./darknet为编译好的可执行文件,detector表示执行目标检测任务,train表示执行训练任务,data/voc.data,cfg/yolov4-voc.cfg和backup/yolov4.conv.137文件路径位置必须正确,-map表示可以在训练的同时,进行检测精度评估,每4个epoch评估一次。

测试

  1. 单张测试:    ./darknet detector test cfg/voc.data cfg/yolov4-voc.cfg backup/yolov4-voc.weights -thresh 0.25 data/dog.jpg
  2. 批量测试:    cfg中batch以及subdivisions均设为1,参考https://blog.csdn.net/qq_38915710/article/details/97292913

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值