斯坦福黑科技FramePack问世:6G显存笔记本也能生成1分钟高清视频!AI影视革命来了

    你的电脑即将变身好莱坞制片厂!斯坦福大学最新发布的FramePack技术,仅需6GB显存的笔记本GPU即可生成60秒高清电影级画面。这项突破不仅终结了AI视频"鬼畜"时代,更让普通人拥有了创造《头号玩家》的能力——让我们揭开这项改写行业规则的黑科技面纱。

一、视频AI的"哥德巴赫猜想"被破解

过去三年,AI视频生成始终困在"15秒魔咒"中。就像用吸管喝珍珠奶茶,生成时间越长,要么算力爆炸(显存不足),要么画面崩坏(人物变形)。斯坦福团队发现的"遗忘-漂移困境"正是症结所在——模型既要记住前情提要,又要避免误差累积,这好比要求导演同时记住3000个分镜脚本。

二、了解FramePack

下一帧(或下一帧部分)预测模型如下所示:

1. 输入帧的动态压缩术:像打包行李箱一样分配显存

FramePack的核心在于智能分配每一帧的"注意力资源"。想象你要打包行李箱,重要物品需要更大空间——同理,离目标帧越近的输入帧获得更多计算资源。

技术亮点:

  • 动态分块编码:通过调整分块核尺寸(如(2,4,4)),将480P视频帧压缩至192个token,相比传统方法节省8倍显存

  • 智能优先级调度:关键帧使用精细分块(如(1,2,2)核),非关键帧使用粗糙分块,实现O(1)复杂度计算

  • 灵活调度策略:支持图像转视频模式(首帧优先)、用户指定重点帧等多种场景

2. 抗漂移黑科技:打破因果律的双向预测

传统模型像多米诺骨牌,一旦某帧出错就会连锁崩塌。FramePack引入革命性的双向采样:

传统因果采样(单方向):

输入帧1 → 生成帧2 → 生成帧3...(误差逐级累积)

FramePack双向采样:

请注意,只有 “vanilla sampling” 是因果关系。

“anti-drifting sampling” 和 “inverted anti-drifting sampling” 都是双向的。

  • 逆向抗漂移:首帧作为锚点,后续生成始终与之对齐

  • 混合采样:交替前向/逆向生成,如同织网般稳定结构

实验显示,该方法可生成1800帧(1分钟)视频而不失真,在RTX 3060笔记本上即可完成。

三、官方案例

(官方效果可移步该链接查看:FramePack

图片生成5秒视频(30fps,150帧)

图片生成60秒视频(30fps,1800帧)

四、部署

git下载源代码

    git clone https://github.com/lllyasviel/FramePack.gitcd FramePack

    创建Conda环境

    官方推荐Python版本是3.10

      conda create -n framepack python==3.10conda activate framepack

      安装依赖

        pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu126pip install -r requirements.txt

        启动GUI

          python demo_gradio.py --server 0.0.0.0 --port 7799

          可以通过--server ,--port指定服务器IP/域名以及端口。

          服务启动后访问:http://localhost:7799

            ---------------------------------------------------------------------------------------------------------------------------------

            想了解更多关于大数据以及人工智能的资讯,可关注微信公众号“智数星辰”,可扫以下二维码关注:

            评论
            添加红包

            请填写红包祝福语或标题

            红包个数最小为10个

            红包金额最低5元

            当前余额3.43前往充值 >
            需支付:10.00
            成就一亿技术人!
            领取后你会自动成为博主和红包主的粉丝 规则
            hope_wisdom
            发出的红包
            实付
            使用余额支付
            点击重新获取
            扫码支付
            钱包余额 0

            抵扣说明:

            1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
            2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

            余额充值