论文翻译:arXiv-2023 Rethinking Benchmark and Contamination for Language Models with Rephrased Samples

Rethinking Benchmark and Contamination for Language Models with Rephrased Samples
https://arxiv.org/abs/2311.04850

重新思考带有重新表述样本的语言模型的基准测试和污染问题

摘要

大型语言模型越来越多地在人类产生的所有数据上进行训练。由于预训练或微调数据集中的潜在污染,许多人对公共基准测试的可信度提出了担忧。虽然大多数数据去污染工作应用字符串匹配(例如,n-gram重叠)来删除基准测试数据,但我们表明这些方法是不够的,简单的测试数据变化(例如,释义,翻译)可以轻易绕过这些去污染措施。此外,我们证明如果这种测试数据的变化没有消除,一个13B模型可以轻易地过度拟合一个测试基准,并实现与GPT-4相当的极高性能。我们在广泛使用的基准测试中验证了这样的观察,如MMLU,GSK8k和HumanEval。为了应对这种日益增长的风险,我们提出了一种更强大的基于LLM的去污染方法,并将其应用于流行的预训练和微调数据集,揭示了显著的以前未知

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CSPhD-winston-杨帆

给我饭钱

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值